Skip to main content

Python Fast Noise with SIMD

Project description

PyFastNoiseSIMD

PyFastNoiseSIMD is a wrapper around Jordan Peck's synthetic noise library https://github.com/Auburns/FastNoise-SIMD which has been accelerated with SIMD instruction sets. It may be installed via pip:

pip install pyfastnoisesimd

Parallelism is further enhanced by the use of concurrent.futures to multi-thread the generation of noise for large arrays. Thread scaling is generally in the range of 50-90 %, depending largely on the vectorized instruction set used. The number of threads, defaults to the number of virtual cores on the system. The ideal number of threads is typically the number of physical cores, irrespective of Intel Hyperthreading®.

Here is a simple example to generate Perlin-style noise on a 3D rectilinear grid::

import pyfastnoisesimd as fns
import numpy as np
shape = [512, 512, 512]
seed = np.random.randint(2**31)
N_threads = 4

perlin = fns.Noise(seed=seed, numWorkers=N_threads)
perlin.frequency = 0.02
perlin.noiseType = fns.NoiseType.Perlin
perlin.fractal.octaves = 4
perlin.fractal.lacunarity = 2.1
perlin.fractal.gain = 0.45
perlin.perturb.perturbType = fns.PerturbType.NoPerturb
result = perlin.genAsGrid(shape)

where result is a 3D numpy.ndarray of dtype 'float32'. Alternatively, the user can provide coordinates, which is helpful for tasks such as custom bump-mapping a tessellated surface, via Noise.getFromCoords(coords).

More extensive examples are found in the examples folder on the Github repository.

Parallelism is further enhanced by the use of concurrent.futures to multi-thread the generation of noise for large arrays. Thread scaling is generally in the range of 50-90 %, depending largely on the vectorized instruction set used. The number of threads, defaults to the number of virtual cores on the system. The ideal number of threads is typically the number of physical cores, irrespective of Intel Hyperthreading®.

Documentation

Check it out at:

http://pyfastnoisesimd.readthedocs.io

Installation

pyfastnoisesimd is available on PyPI, and may be installed via pip::

pip install --upgrade pip
pip install --upgrade setuptools
pip install -v pyfastnoisesimd

Wheels are provided for Windows, Mac OSX, and Linux via manywheels.

Building from source on Windows will require the appropriate MS Visual Studio version for your version of Python, or MSVC Build Tools:

http://landinghub.visualstudio.com/visual-cpp-build-tools

On Linux or OSX, only a source distribution is provided and installation requires gcc or clang. For AVX512 support with GCC, GCC7.2+ is required, lower versions will compile with AVX2/SSE4.1/SSE2 support only. GCC earlier than 4.7 disables AVX2 as well. Note that pip does not respect the $CC environment variable, so to clone and build from source with gcc-7:

git clone https://github.com/robbmcleod/pyfastnoisesimd.git
alias gcc=gcc-7; alias g++=g++-7
pip install -v ./pyfastnoisesimd

Installing GCC7.2 on Ubuntu (with sudo or as root)::

add-apt-repository ppa:ubuntu-toolchain-r/test
apt update
apt install gcc-7 g++-7

Benchmarks

Generally speaking thread scaling is higher on machines with SSE4 support only, as most CPUs throttle clock speed down to limit heat generation with AVX2. As such, AVX2 is only about 1.5x faster than SSE4 whereas on a pure SIMD instruction length basis (4 versus 8) you would expect it to be x2 faster.

The first test is used the default mode, a cubic grid, Noise.genAsGrid(), from examples\gridded_noise.py:

Array shape: [8,1024,1024] CPU: Intel i7-7820X Skylake-X (8 cores, 3.6 GHz), Windows 7 SIMD level supported: AVX2 & FMA3

Single-threaded mode

Computed 8388608 voxels cellular noise in 0.298 s
    35.5 ns/voxel
Computed 8388608 voxels Perlin noise in 0.054 s
    6.4 ns/voxel

Multi-threaded (8 threads) mode

Computed 8388608 voxels cellular noise in 0.044 s 5.2 ns/voxel 685.0 % thread scaling Computed 8388608 voxels Perlin noise in 0.013 s 1.5 ns/voxel 431.3 % thread scaling

The alternative mode is Noise.getFromCoords() where the user provides the coordinates in Cartesian-space, from examples\GallPeters_projection.py:

Single threaded mode

Generated noise from 2666000 coordinates with 1 workers in 1.766e-02 s
    6.6 ns/pixel

Multi-threaded (4 threads) mode

Generated noise from 2666000 coordinates with 4 workers in 6.161e-03 s 2.3 ns/pixel 286.6 % thread scaling

Release Notes

0.4.2

  • Wheels are now built via GitHub Actions and available on PyPi.
  • Support for Python 3.8 and 3.9 added. Support for Python 3.5 was dropped.

0.4.1

  • Support for Python 3.7 now official. On Windows AVX512 is still disabled as even with MSVC2017.3 some of the required SIMD instructions are unavailable.

0.4.0

  • Fixed aligned memory location on Windows and enabled multi-threaded processing for both generators.
  • renamed emptyCoords function to empty_coords.

0.3.2

  • Disabled aligned memory allocation on Windows, due to it causing seg-faults.
  • Thanks to Luke H-W for finding and fixing a memory leak in genAsGrid.
  • Thanks to Enderlook for reporting that the start parameter was not working in multi-threading mode for calls to genAsGrid.

0.3.1

  • Changes to calling convention to avoid pointer size confusion between 64- and 32-bit OSs.

0.3.0

  • Elliott Sales de Andrade fixed a number of issues with installation to build cleanly and better handle CPU SIMD capabilities.
  • Added multi-threaded operation to Noise.genFromCoords().
  • Added orthographic_projection.py to examples/.
  • Updated doc-strings to accommodate sphinx.napoleon formatting.
  • Added Sphinx-docs in the doc directory.
  • Corrected spelling error PerturbType.NoPetrub -> PerturbType.NoPerturb
  • Stopped fastnoisesimd from freeing memory for coords argument of Noise.genFromCoords(coords). It should now be possible to reuse coords without seg-faulting.

0.2.1

  • Drop explicit Python 3.4 support as we cannot test it for Windows on MSVC2010 and in any case it wouldn't have AVX2 instruction support.
  • Start tagging, see RELEASING_GUIDE.txt for notes.

0.2.0

  • Added the capability to provide coordinates
  • Added examples/projection.py to demonstrate noise generation by supplied coordinates as applied to a Gall-Peters cylindrical projection of a sphere (i.e. a world map).
  • Added Noise object-oriented interface. Noise uses Python properties to expose the Set/Get functions in FastNoiseSIMD.
  • Added unittest support.
  • Deprecated 'kitchen sink' pyfastnoisesimd.generate() function.
  • Changed README from markdown to rich-structured text.
  • Fixed a bug in the deprecated pyfastnoisesimd.generate() that always set the seed to 42.
  • Fixed spelling errors: axisScales -> axesScales, indicies -> indices

0.1.5

  • Using all lower-case directories for *nix.

0.1.4

  • Fixed bug on multithreading; current approach splits arrays up to min(threads, array.shape[0])

0.1.2

  • Added MANIFEST.in file for source distribution on PyPI

FastNoiseSIMD library

If you want a more direct interface with the underlying library you may use the pyfastsimd._ext module, which is a function-for-function mapping to the C++ code.

FastNoiseSIMD is implemented by Jordan Peck, and may be found at:

https://github.com/Auburns/FastNoiseSIMD

It aims to provide faster performance through the use of intrinsic(SIMD) CPU functions. Vectorisation of the code allows noise functions to process data in sets of 4/8/16 increasing performance by 700% in some cases (Simplex).

See the Wiki for usage information on the noise types:

https://github.com/Auburns/FastNoiseSIMD/wiki

Download links for a GUI-based reference noise generator may be found at:

https://github.com/Auburns/FastNoiseSIMD/releases

Authors

Robert A. McLeod wrote the Python wrapper, implemented multi-threading, and wrote the documentation.

Elliott Sales de Andrade contributed a number of fixes to allow building to succeed on many platforms.

Jordan Peck wrote the underlying library FastNoiseSIMD.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyfastnoisesimd-0.4.2.tar.gz (52.4 kB view details)

Uploaded Source

Built Distributions

pyfastnoisesimd-0.4.2-cp39-cp39-win_amd64.whl (249.0 kB view details)

Uploaded CPython 3.9 Windows x86-64

pyfastnoisesimd-0.4.2-cp39-cp39-win32.whl (283.4 kB view details)

Uploaded CPython 3.9 Windows x86

pyfastnoisesimd-0.4.2-cp39-cp39-manylinux2010_x86_64.whl (3.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

pyfastnoisesimd-0.4.2-cp39-cp39-manylinux2010_i686.whl (3.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ i686

pyfastnoisesimd-0.4.2-cp39-cp39-manylinux1_i686.whl (3.8 MB view details)

Uploaded CPython 3.9

pyfastnoisesimd-0.4.2-cp39-cp39-macosx_10_9_x86_64.whl (322.5 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

pyfastnoisesimd-0.4.2-cp38-cp38-win_amd64.whl (248.9 kB view details)

Uploaded CPython 3.8 Windows x86-64

pyfastnoisesimd-0.4.2-cp38-cp38-win32.whl (283.5 kB view details)

Uploaded CPython 3.8 Windows x86

pyfastnoisesimd-0.4.2-cp38-cp38-manylinux2010_x86_64.whl (3.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

pyfastnoisesimd-0.4.2-cp38-cp38-manylinux2010_i686.whl (3.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ i686

pyfastnoisesimd-0.4.2-cp38-cp38-manylinux1_i686.whl (3.8 MB view details)

Uploaded CPython 3.8

pyfastnoisesimd-0.4.2-cp38-cp38-macosx_10_9_x86_64.whl (322.5 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

pyfastnoisesimd-0.4.2-cp37-cp37m-win_amd64.whl (248.9 kB view details)

Uploaded CPython 3.7m Windows x86-64

pyfastnoisesimd-0.4.2-cp37-cp37m-win32.whl (283.3 kB view details)

Uploaded CPython 3.7m Windows x86

pyfastnoisesimd-0.4.2-cp37-cp37m-manylinux2010_x86_64.whl (3.5 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

pyfastnoisesimd-0.4.2-cp37-cp37m-manylinux2010_i686.whl (3.8 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ i686

pyfastnoisesimd-0.4.2-cp37-cp37m-manylinux1_i686.whl (3.8 MB view details)

Uploaded CPython 3.7m

pyfastnoisesimd-0.4.2-cp37-cp37m-macosx_10_9_x86_64.whl (322.3 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

pyfastnoisesimd-0.4.2-cp36-cp36m-win_amd64.whl (248.8 kB view details)

Uploaded CPython 3.6m Windows x86-64

pyfastnoisesimd-0.4.2-cp36-cp36m-win32.whl (283.2 kB view details)

Uploaded CPython 3.6m Windows x86

pyfastnoisesimd-0.4.2-cp36-cp36m-manylinux2010_x86_64.whl (3.5 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64

pyfastnoisesimd-0.4.2-cp36-cp36m-manylinux2010_i686.whl (3.8 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ i686

pyfastnoisesimd-0.4.2-cp36-cp36m-manylinux1_i686.whl (3.8 MB view details)

Uploaded CPython 3.6m

pyfastnoisesimd-0.4.2-cp36-cp36m-macosx_10_9_x86_64.whl (322.3 kB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file pyfastnoisesimd-0.4.2.tar.gz.

File metadata

  • Download URL: pyfastnoisesimd-0.4.2.tar.gz
  • Upload date:
  • Size: 52.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/51.3.3.post20210118 requests-toolbelt/0.9.1 tqdm/4.58.0 CPython/3.7.9

File hashes

Hashes for pyfastnoisesimd-0.4.2.tar.gz
Algorithm Hash digest
SHA256 4ba2827a99e9db4c382f1541e603a7526b736c62755ecf7cd8f490afa5c1016d
MD5 9ff625cc0111c90de3fc7c7de03dc5ea
BLAKE2b-256 66a97f3e010c62593b02fcc8473df8b0487e134c4ecd4b135bc2a6ab6e003a2f

See more details on using hashes here.

File details

Details for the file pyfastnoisesimd-0.4.2-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: pyfastnoisesimd-0.4.2-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 249.0 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/51.3.3.post20210118 requests-toolbelt/0.9.1 tqdm/4.58.0 CPython/3.7.9

File hashes

Hashes for pyfastnoisesimd-0.4.2-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 91b76c0fa5e5fad7cf7720be52d10b4900d1890150cc9aa9c2307059bf1948af
MD5 b34a019a2536d847f42c47f3debb0d8b
BLAKE2b-256 df8f6d8e0aed0f5e30eca9bdfe5e5ac766b6213313e4e4b7606aded847b1311a

See more details on using hashes here.

File details

Details for the file pyfastnoisesimd-0.4.2-cp39-cp39-win32.whl.

File metadata

  • Download URL: pyfastnoisesimd-0.4.2-cp39-cp39-win32.whl
  • Upload date:
  • Size: 283.4 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/51.3.3.post20210118 requests-toolbelt/0.9.1 tqdm/4.58.0 CPython/3.7.9

File hashes

Hashes for pyfastnoisesimd-0.4.2-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 67e682101e6a23d872cf948231ad1f7568a093b40b3e7dd603ac5759e7f08702
MD5 bfb5a78238fd54a94215c2937d8ab1fd
BLAKE2b-256 3f884312c6127edbe1490295ec8dbed7044f77c15f4eb6c2020a76605d931c25

See more details on using hashes here.

File details

Details for the file pyfastnoisesimd-0.4.2-cp39-cp39-manylinux2010_x86_64.whl.

File metadata

  • Download URL: pyfastnoisesimd-0.4.2-cp39-cp39-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 3.5 MB
  • Tags: CPython 3.9, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/51.3.3.post20210118 requests-toolbelt/0.9.1 tqdm/4.58.0 CPython/3.7.9

File hashes

Hashes for pyfastnoisesimd-0.4.2-cp39-cp39-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 08127f0a26eabb8b4f9a896df171cfc85436b9c10e6311bd7a2463a9f572dd53
MD5 62e97438fd0749a90ac84f501ec75509
BLAKE2b-256 00c073b726c5c752fec59361bf8da2b45aae42689612e09c43f2496bc0ddd364

See more details on using hashes here.

File details

Details for the file pyfastnoisesimd-0.4.2-cp39-cp39-manylinux2010_i686.whl.

File metadata

  • Download URL: pyfastnoisesimd-0.4.2-cp39-cp39-manylinux2010_i686.whl
  • Upload date:
  • Size: 3.8 MB
  • Tags: CPython 3.9, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/51.3.3.post20210118 requests-toolbelt/0.9.1 tqdm/4.58.0 CPython/3.7.9

File hashes

Hashes for pyfastnoisesimd-0.4.2-cp39-cp39-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 271281c321d0d86e7e40aa521d35ec7d98760fb616bdbb050f783a8d70b51f2c
MD5 1f5d71cfde48a79df51eb3ff2f865cf6
BLAKE2b-256 1bcb528e873c0e713b1d8dbc328cbaed4a0cc031eed38ac26c18c60e3de10f2b

See more details on using hashes here.

File details

Details for the file pyfastnoisesimd-0.4.2-cp39-cp39-manylinux1_x86_64.whl.

File metadata

  • Download URL: pyfastnoisesimd-0.4.2-cp39-cp39-manylinux1_x86_64.whl
  • Upload date:
  • Size: 3.5 MB
  • Tags: CPython 3.9
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/51.3.3.post20210118 requests-toolbelt/0.9.1 tqdm/4.58.0 CPython/3.7.9

File hashes

Hashes for pyfastnoisesimd-0.4.2-cp39-cp39-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 aab3f0562e8cd40a81e5a8cc3d8e5194ac036931abb2d30cd2eec81f433d68c4
MD5 3c748425e86b75403ec378be46825bdd
BLAKE2b-256 a3dc132c78471d19a71dde205b5a866ee74594ff7dc0ee6e1c6f05c3d483ed35

See more details on using hashes here.

File details

Details for the file pyfastnoisesimd-0.4.2-cp39-cp39-manylinux1_i686.whl.

File metadata

  • Download URL: pyfastnoisesimd-0.4.2-cp39-cp39-manylinux1_i686.whl
  • Upload date:
  • Size: 3.8 MB
  • Tags: CPython 3.9
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/51.3.3.post20210118 requests-toolbelt/0.9.1 tqdm/4.58.0 CPython/3.7.9

File hashes

Hashes for pyfastnoisesimd-0.4.2-cp39-cp39-manylinux1_i686.whl
Algorithm Hash digest
SHA256 2d6d752f8b7eb51967a10362dfb9abb0733425f73135e0c7de99f260e907025e
MD5 52a58f64eb44f4b2644bc78040a5740f
BLAKE2b-256 e097770262b4a224c749e4d22e1e8a97697a9d287d7c0fdfb75a2525048ed206

See more details on using hashes here.

File details

Details for the file pyfastnoisesimd-0.4.2-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: pyfastnoisesimd-0.4.2-cp39-cp39-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 322.5 kB
  • Tags: CPython 3.9, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/51.3.3.post20210118 requests-toolbelt/0.9.1 tqdm/4.58.0 CPython/3.7.9

File hashes

Hashes for pyfastnoisesimd-0.4.2-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 7d15373b5a7fd57d8a0968b3f9de0e323a86bdd940746746453dbfd45d6b31b2
MD5 e3cea38e80624e882bbf73022138a887
BLAKE2b-256 ff225d9e5fe7646d99aea1a54a440ad105e36303cd244e79d3f7fb9088d53805

See more details on using hashes here.

File details

Details for the file pyfastnoisesimd-0.4.2-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: pyfastnoisesimd-0.4.2-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 248.9 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/51.3.3.post20210118 requests-toolbelt/0.9.1 tqdm/4.58.0 CPython/3.7.9

File hashes

Hashes for pyfastnoisesimd-0.4.2-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 c0b7de76dcb57bc0afa5fda61af06d740ee885d274998835105dc89d4fdd2f61
MD5 668397d7a68bd0218a5095a3ef9df542
BLAKE2b-256 14e9b9dbb5ed4d6dc9ed8676e999311de51d7f06101b4230d02912d444768306

See more details on using hashes here.

File details

Details for the file pyfastnoisesimd-0.4.2-cp38-cp38-win32.whl.

File metadata

  • Download URL: pyfastnoisesimd-0.4.2-cp38-cp38-win32.whl
  • Upload date:
  • Size: 283.5 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/51.3.3.post20210118 requests-toolbelt/0.9.1 tqdm/4.58.0 CPython/3.7.9

File hashes

Hashes for pyfastnoisesimd-0.4.2-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 1d760dafd94380de4e8a49216f80126f3443c00d13e8038ec02e8d613c7621bd
MD5 2b1f905eb37d812489fb15ede2a3f602
BLAKE2b-256 00f78849cac82e6c7c224ca6f620b0aa2fb78b587256b403d44682fbe00b23e5

See more details on using hashes here.

File details

Details for the file pyfastnoisesimd-0.4.2-cp38-cp38-manylinux2010_x86_64.whl.

File metadata

  • Download URL: pyfastnoisesimd-0.4.2-cp38-cp38-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 3.5 MB
  • Tags: CPython 3.8, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/51.3.3.post20210118 requests-toolbelt/0.9.1 tqdm/4.58.0 CPython/3.7.9

File hashes

Hashes for pyfastnoisesimd-0.4.2-cp38-cp38-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 2d4ec51e9d4f71f8b34397a32c7cd4170e5f3a19b161649c1e22929ff66e3c40
MD5 cf7b6211b1dc3c8a3626e4f3c37d57e8
BLAKE2b-256 03944faad1812ab2606bf8256258af5d8101518d4c1a483fe64d2f55f57e2a82

See more details on using hashes here.

File details

Details for the file pyfastnoisesimd-0.4.2-cp38-cp38-manylinux2010_i686.whl.

File metadata

  • Download URL: pyfastnoisesimd-0.4.2-cp38-cp38-manylinux2010_i686.whl
  • Upload date:
  • Size: 3.8 MB
  • Tags: CPython 3.8, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/51.3.3.post20210118 requests-toolbelt/0.9.1 tqdm/4.58.0 CPython/3.7.9

File hashes

Hashes for pyfastnoisesimd-0.4.2-cp38-cp38-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 ef79249368309697b8662b14cffa6bc94669a9e7f0bd827d758acd17d48e00b1
MD5 7704107c25114912cfddf1676a19b91d
BLAKE2b-256 28363060b709466ce0e9cdb28f03ae6b1b1c21452079159fb2e16e8da919a4ca

See more details on using hashes here.

File details

Details for the file pyfastnoisesimd-0.4.2-cp38-cp38-manylinux1_x86_64.whl.

File metadata

  • Download URL: pyfastnoisesimd-0.4.2-cp38-cp38-manylinux1_x86_64.whl
  • Upload date:
  • Size: 3.5 MB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/51.3.3.post20210118 requests-toolbelt/0.9.1 tqdm/4.58.0 CPython/3.7.9

File hashes

Hashes for pyfastnoisesimd-0.4.2-cp38-cp38-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 48a45496dab8efdd9b11bcb22741f21bd02de1d5bc266f9acef016e36a90b71c
MD5 fd2ca20beaa10c7b67ea6e0dafafc9cf
BLAKE2b-256 3ec6d8d600815f5c0786c6aa8956540adad155e1fb1e479ddd9bf463c0c8a6b1

See more details on using hashes here.

File details

Details for the file pyfastnoisesimd-0.4.2-cp38-cp38-manylinux1_i686.whl.

File metadata

  • Download URL: pyfastnoisesimd-0.4.2-cp38-cp38-manylinux1_i686.whl
  • Upload date:
  • Size: 3.8 MB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/51.3.3.post20210118 requests-toolbelt/0.9.1 tqdm/4.58.0 CPython/3.7.9

File hashes

Hashes for pyfastnoisesimd-0.4.2-cp38-cp38-manylinux1_i686.whl
Algorithm Hash digest
SHA256 af2c33e2805fbd37c0b2fd993fb4d093ec964e1d26f0f0ed7b809147c0c7c42f
MD5 2f753db934f04e2daf73682c31ce014d
BLAKE2b-256 71dead066ca5e86035d7490e74ac27e501b90b40b2224d755dba1cf0fe11c0e6

See more details on using hashes here.

File details

Details for the file pyfastnoisesimd-0.4.2-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: pyfastnoisesimd-0.4.2-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 322.5 kB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/51.3.3.post20210118 requests-toolbelt/0.9.1 tqdm/4.58.0 CPython/3.7.9

File hashes

Hashes for pyfastnoisesimd-0.4.2-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ee5d384795fe7fec3954dc591d25be4fcccdc05eda66957ee121ce76a62286ee
MD5 600e3eac26a6241a29eb1abb1f7e43d8
BLAKE2b-256 68c2433771dea154cdc81f07437465af46f395b223148f40293fda39ca923f1a

See more details on using hashes here.

File details

Details for the file pyfastnoisesimd-0.4.2-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: pyfastnoisesimd-0.4.2-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 248.9 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/51.3.3.post20210118 requests-toolbelt/0.9.1 tqdm/4.58.0 CPython/3.7.9

File hashes

Hashes for pyfastnoisesimd-0.4.2-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 fc67fef0f521f08540ace77828fcbea7f46275d1b4e9d644daf67094d5dfd98f
MD5 17d99eac0060f7008b47a36d06e2a86d
BLAKE2b-256 b59223033d861122407e6b248e15d1cba4b493076fe3bc36ad49946713a05024

See more details on using hashes here.

File details

Details for the file pyfastnoisesimd-0.4.2-cp37-cp37m-win32.whl.

File metadata

  • Download URL: pyfastnoisesimd-0.4.2-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 283.3 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/51.3.3.post20210118 requests-toolbelt/0.9.1 tqdm/4.58.0 CPython/3.7.9

File hashes

Hashes for pyfastnoisesimd-0.4.2-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 9e2cb5d841d77fa78e123fa6839d5979654735b4ad71a5790b874e0a9963559f
MD5 4709d6697dbaf09b26d1bb0377f6bc35
BLAKE2b-256 5e03a5ec6294f68f42ffd927e26b1d3d1682313b8ddbbc2afc1093ef28d17f47

See more details on using hashes here.

File details

Details for the file pyfastnoisesimd-0.4.2-cp37-cp37m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: pyfastnoisesimd-0.4.2-cp37-cp37m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 3.5 MB
  • Tags: CPython 3.7m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/51.3.3.post20210118 requests-toolbelt/0.9.1 tqdm/4.58.0 CPython/3.7.9

File hashes

Hashes for pyfastnoisesimd-0.4.2-cp37-cp37m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 6dab9f91e63353f481072f105b70662cde5243fba0597147d30afe1e1813a687
MD5 7952e63ab37c1e0381a892b32ee3ce2b
BLAKE2b-256 e5cf71ba30dda399cc50e4dfbebc94c097c4c4981e3a177977d65bff06564b84

See more details on using hashes here.

File details

Details for the file pyfastnoisesimd-0.4.2-cp37-cp37m-manylinux2010_i686.whl.

File metadata

  • Download URL: pyfastnoisesimd-0.4.2-cp37-cp37m-manylinux2010_i686.whl
  • Upload date:
  • Size: 3.8 MB
  • Tags: CPython 3.7m, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/51.3.3.post20210118 requests-toolbelt/0.9.1 tqdm/4.58.0 CPython/3.7.9

File hashes

Hashes for pyfastnoisesimd-0.4.2-cp37-cp37m-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 c93c9fd987bc84c4179acc78543561ed76baf581040abf06b61d4c3f44ebc3b6
MD5 5319dc7e475fa95eeaf2fbe6681bbd97
BLAKE2b-256 f1275567ec210268c92e21d098f193028c83e8ac3997288afaa9c310b896cf86

See more details on using hashes here.

File details

Details for the file pyfastnoisesimd-0.4.2-cp37-cp37m-manylinux1_x86_64.whl.

File metadata

  • Download URL: pyfastnoisesimd-0.4.2-cp37-cp37m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 3.5 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/51.3.3.post20210118 requests-toolbelt/0.9.1 tqdm/4.58.0 CPython/3.7.9

File hashes

Hashes for pyfastnoisesimd-0.4.2-cp37-cp37m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 7415175547f9adf1d09416b2bf691847c144304d9407e6c170e9ebec27b46de9
MD5 248e9810101ba3a8077372dafe8f8ab0
BLAKE2b-256 3dcdbae5b35ad644e71082188e7f81d79bcd811efad320e64f574a2c1de251e4

See more details on using hashes here.

File details

Details for the file pyfastnoisesimd-0.4.2-cp37-cp37m-manylinux1_i686.whl.

File metadata

  • Download URL: pyfastnoisesimd-0.4.2-cp37-cp37m-manylinux1_i686.whl
  • Upload date:
  • Size: 3.8 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/51.3.3.post20210118 requests-toolbelt/0.9.1 tqdm/4.58.0 CPython/3.7.9

File hashes

Hashes for pyfastnoisesimd-0.4.2-cp37-cp37m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 bbabe06a180c7b07880edb20fe6257a4c3a03207cca453d5a473ba37fa512ab6
MD5 b3b9a73e8a54babb57b37fc4904423cb
BLAKE2b-256 223dbb909a45ee43186fa7e724ea1cee2dcfa2e4e4ccc7b689a4f7380ae2d85f

See more details on using hashes here.

File details

Details for the file pyfastnoisesimd-0.4.2-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: pyfastnoisesimd-0.4.2-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 322.3 kB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/51.3.3.post20210118 requests-toolbelt/0.9.1 tqdm/4.58.0 CPython/3.7.9

File hashes

Hashes for pyfastnoisesimd-0.4.2-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 d4b6945fa65e78da56bd5050c9ccb802c05961e1352808a011e5a21979ff4706
MD5 e801a6eeff9782bb374a936c2cef6509
BLAKE2b-256 3db6e823050d013d842a0e8cf5033af8612a39e1c3aa7defc28d63d3c218bd54

See more details on using hashes here.

File details

Details for the file pyfastnoisesimd-0.4.2-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: pyfastnoisesimd-0.4.2-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 248.8 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/51.3.3.post20210118 requests-toolbelt/0.9.1 tqdm/4.58.0 CPython/3.7.9

File hashes

Hashes for pyfastnoisesimd-0.4.2-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 d8540ed0ae93d4cf973b0d2fca04e17c36553ca22a9e419bc8f95b00f8017f0a
MD5 4e831350e9957afed4b9b3a3e8b521bd
BLAKE2b-256 86e7fab08a004048fe10cae7b9151915b1bc4efa77a13eae7eada733ddcaa202

See more details on using hashes here.

File details

Details for the file pyfastnoisesimd-0.4.2-cp36-cp36m-win32.whl.

File metadata

  • Download URL: pyfastnoisesimd-0.4.2-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 283.2 kB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/51.3.3.post20210118 requests-toolbelt/0.9.1 tqdm/4.58.0 CPython/3.7.9

File hashes

Hashes for pyfastnoisesimd-0.4.2-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 57fdce8b7a58ecc793a9edfe76a352704ab73d1023dce593f425bce0c91e0bb1
MD5 d40c2e5b440338f3f603fce75fe9e674
BLAKE2b-256 7a479adeec74b5898a455bc7740b492ed36af6ddb4ca6d100286de271388c2c0

See more details on using hashes here.

File details

Details for the file pyfastnoisesimd-0.4.2-cp36-cp36m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: pyfastnoisesimd-0.4.2-cp36-cp36m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 3.5 MB
  • Tags: CPython 3.6m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/51.3.3.post20210118 requests-toolbelt/0.9.1 tqdm/4.58.0 CPython/3.7.9

File hashes

Hashes for pyfastnoisesimd-0.4.2-cp36-cp36m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 f8e61fffd5000924d736af04a4075bbf75adb1807d4bfabd920a1b1af824e2c4
MD5 39aab8925b6ae33d7addaacfc1bc0344
BLAKE2b-256 2b85de81bc80265fd77d9423066f4eebe99739579aaa0ad074e894d913cd5f2a

See more details on using hashes here.

File details

Details for the file pyfastnoisesimd-0.4.2-cp36-cp36m-manylinux2010_i686.whl.

File metadata

  • Download URL: pyfastnoisesimd-0.4.2-cp36-cp36m-manylinux2010_i686.whl
  • Upload date:
  • Size: 3.8 MB
  • Tags: CPython 3.6m, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/51.3.3.post20210118 requests-toolbelt/0.9.1 tqdm/4.58.0 CPython/3.7.9

File hashes

Hashes for pyfastnoisesimd-0.4.2-cp36-cp36m-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 141303f25416eaaeadda9891850c45f785c85abba555b9c2dd474e9d61223cbc
MD5 45abff330a7d4475f0fbb95b182653c2
BLAKE2b-256 539bed9b0b95eaa3e79959bffa5297c355da1d820317676e1cb196132cc8827c

See more details on using hashes here.

File details

Details for the file pyfastnoisesimd-0.4.2-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

  • Download URL: pyfastnoisesimd-0.4.2-cp36-cp36m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 3.5 MB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/51.3.3.post20210118 requests-toolbelt/0.9.1 tqdm/4.58.0 CPython/3.7.9

File hashes

Hashes for pyfastnoisesimd-0.4.2-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 d825f2d24b300ffbb0b0557f0a5d9ad6ee996f050830d3a1fcb2e305a09f886a
MD5 774a23d7e312888095f10685ede3ebcb
BLAKE2b-256 fb9462ad2338d05cd0918d2815377aae87515b40c2436854ccd8201ea2895ef3

See more details on using hashes here.

File details

Details for the file pyfastnoisesimd-0.4.2-cp36-cp36m-manylinux1_i686.whl.

File metadata

  • Download URL: pyfastnoisesimd-0.4.2-cp36-cp36m-manylinux1_i686.whl
  • Upload date:
  • Size: 3.8 MB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/51.3.3.post20210118 requests-toolbelt/0.9.1 tqdm/4.58.0 CPython/3.7.9

File hashes

Hashes for pyfastnoisesimd-0.4.2-cp36-cp36m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 a7949318e50ddd347247cba8535b2b16ee48e75f38affcb336d4e352c35b4b8a
MD5 1022816416d0980a44b8999b9eb9b15d
BLAKE2b-256 978042a5b04c2274311a38890c28e4604fe2647c783a3a76b58d8d096b18fd28

See more details on using hashes here.

File details

Details for the file pyfastnoisesimd-0.4.2-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: pyfastnoisesimd-0.4.2-cp36-cp36m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 322.3 kB
  • Tags: CPython 3.6m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/51.3.3.post20210118 requests-toolbelt/0.9.1 tqdm/4.58.0 CPython/3.7.9

File hashes

Hashes for pyfastnoisesimd-0.4.2-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c7ffd9cc03a4f8112e82c020524ef21fce94d9d202ba11801962c0a08bc22e6e
MD5 e0cdc420e14584ad0ebac35c03625228
BLAKE2b-256 71a91641950575cb9a971a1c5ea7256fad592509a76ef1ceb2a0426871f604b2

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page