Skip to main content

Python wrappers for particle FMMs

Project description

https://gitlab.tiker.net/inducer/pyfmmlib/badges/master/pipeline.svg https://badge.fury.io/py/pyfmmlib.png

pyfmmlib is a Python wrapper for fmmlib2d and fmmlib3d implementations of the fast multipole method for Laplace and Helmholtz potentials by Zydrunas Gimbutas and Leslie Greengard (and including code by many more people).

This wrapper is far from comprehensive. It just catches the things I ended up needing. Nonetheless, the FMMs and a fair bit of other useful stuff is accessible.

Installation

Binary wheels and source code are available from the Python package index. Thank you to Isuru Fernando for working on infrastructure to build those wheels.

To build this from source, you need

Run:

python setup.py install

as usual and cross your fingers.

Documentation

Not much, unfortunately. Here’s what I do to figure out how to use stuff:

>>> import pyfmmlib
>>> dir(pyfmmlib)
['__builtins__', '__doc__', '__file__', '__name__', '__package__', '_add_plot', ...]

Fish the desired function from this list (let's use 'legefder' as an
example) and run:

>>> print pyfmmlib.legefder.__doc__
legefder - Function signature:
  val,der = legefder(x,pexp,[n])
Required arguments:
  x : input float
  pexp : input rank-1 array('d') with bounds (n + 1)
Optional arguments:
  n := (len(pexp)-1) input int
Return objects:
  val : float
  der : float

This tells you how to call the function from Python. You can then use grep to fish out the right Fortran source:

$ grep -icl 'legefder' fmmlib*/*/*.f
fmmlib3d/src/legeexps.f

Then look at the docs there, and you’re in business. No idea what function name to look for? Just use the same grep procedure to look for keywords.

Crude, but effective. :)

Two more things:

  • Some functions are wrapped with a _vec suffix. This means they apply to whole vectors of arguments at once. They’re also parallel via OpenMP.

  • pyfmmlib.fmm_part and pyfmmlib.fmm_tria are (dimension-independent) wrappers that make the calling sequence for the FMMs just a wee bit less obnoxious. See examples/fmm.py for more.

    Here’s a rough idea how these are called:

    from pyfmmlib import fmm_part, HelmholtzKernel
    
    pot, grad = fmm_part("PG", iprec=2, kernel=HelmholtzKernel(5),
            sources=sources, mop_charge=1, target=targets)

    Unlike the rest of the library (which calls directly into Fortran), these routines expect (n,3)-shaped (that is, C-Order) arrays.

License

fmmlib{2,3}d are licensed under the 3-clause BSD license. (as of November 2017)

This wrapper is licensed under the MIT license, as below.

Copyright (C) 2013 Andreas Kloeckner

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyfmmlib-2019.1.1.tar.gz (469.6 kB view details)

Uploaded Source

Built Distributions

pyfmmlib-2019.1.1-cp37-cp37m-manylinux1_x86_64.whl (975.4 kB view details)

Uploaded CPython 3.7m

pyfmmlib-2019.1.1-cp37-cp37m-manylinux1_i686.whl (818.9 kB view details)

Uploaded CPython 3.7m

pyfmmlib-2019.1.1-cp37-cp37m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.7m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

pyfmmlib-2019.1.1-cp36-cp36m-manylinux1_x86_64.whl (975.3 kB view details)

Uploaded CPython 3.6m

pyfmmlib-2019.1.1-cp36-cp36m-manylinux1_i686.whl (818.7 kB view details)

Uploaded CPython 3.6m

pyfmmlib-2019.1.1-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.6m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

pyfmmlib-2019.1.1-cp35-cp35m-manylinux1_x86_64.whl (975.5 kB view details)

Uploaded CPython 3.5m

pyfmmlib-2019.1.1-cp35-cp35m-manylinux1_i686.whl (822.2 kB view details)

Uploaded CPython 3.5m

pyfmmlib-2019.1.1-cp34-cp34m-manylinux1_x86_64.whl (976.1 kB view details)

Uploaded CPython 3.4m

pyfmmlib-2019.1.1-cp34-cp34m-manylinux1_i686.whl (822.6 kB view details)

Uploaded CPython 3.4m

pyfmmlib-2019.1.1-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.4m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

pyfmmlib-2019.1.1-cp27-cp27mu-manylinux1_x86_64.whl (973.6 kB view details)

Uploaded CPython 2.7mu

pyfmmlib-2019.1.1-cp27-cp27mu-manylinux1_i686.whl (818.9 kB view details)

Uploaded CPython 2.7mu

pyfmmlib-2019.1.1-cp27-cp27m-manylinux1_x86_64.whl (973.6 kB view details)

Uploaded CPython 2.7m

pyfmmlib-2019.1.1-cp27-cp27m-manylinux1_i686.whl (818.9 kB view details)

Uploaded CPython 2.7m

pyfmmlib-2019.1.1-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (1.4 MB view details)

Uploaded CPython 2.7m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

File details

Details for the file pyfmmlib-2019.1.1.tar.gz.

File metadata

  • Download URL: pyfmmlib-2019.1.1.tar.gz
  • Upload date:
  • Size: 469.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.6.2 requests-toolbelt/0.8.0 tqdm/4.29.0 CPython/3.7.3rc1

File hashes

Hashes for pyfmmlib-2019.1.1.tar.gz
Algorithm Hash digest
SHA256 2af271df581d5fc76a5721aa229e73af93ad2c8fb47bcc316baa62e06d1ddad7
MD5 3e735fae4e96d95aca5724e80e4cb4bf
BLAKE2b-256 9dccf13784bcf96cbcf1369c4ba51fd0aa6963426e028881ead073c37f62c778

See more details on using hashes here.

File details

Details for the file pyfmmlib-2019.1.1-cp37-cp37m-manylinux1_x86_64.whl.

File metadata

  • Download URL: pyfmmlib-2019.1.1-cp37-cp37m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 975.4 kB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.6.2 requests-toolbelt/0.8.0 tqdm/4.29.0 CPython/3.7.3rc1

File hashes

Hashes for pyfmmlib-2019.1.1-cp37-cp37m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 702fc8e4fed7e95705958ef1d4e3ac034fa3d6545d2c8bb222846592ed944e3e
MD5 c3c69b3fb91682bdd4084d82e51d3066
BLAKE2b-256 a515a17ac4670681cb96bae95b34de09ff0dec837d75db544b6f38fb9b55281f

See more details on using hashes here.

File details

Details for the file pyfmmlib-2019.1.1-cp37-cp37m-manylinux1_i686.whl.

File metadata

  • Download URL: pyfmmlib-2019.1.1-cp37-cp37m-manylinux1_i686.whl
  • Upload date:
  • Size: 818.9 kB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.6.2 requests-toolbelt/0.8.0 tqdm/4.29.0 CPython/3.7.3rc1

File hashes

Hashes for pyfmmlib-2019.1.1-cp37-cp37m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 4e1da0820d40010bf9c9b18216e85f02f12a717b12bace7f2955b921dbac71a5
MD5 8897c8fd2c853b8ff06d5bf14289af0c
BLAKE2b-256 a910d3f73e4b8719ec0ddfc767f8ac2618e298b897a4d7b6b54b4b7824fd063f

See more details on using hashes here.

File details

Details for the file pyfmmlib-2019.1.1-cp37-cp37m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for pyfmmlib-2019.1.1-cp37-cp37m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 9737facd95095a075817db43c016e8150fdfda879aa750a05bac51b48d80a99e
MD5 7625d833bf7aef0edf0b956e510c91de
BLAKE2b-256 c2d6674d2748bc7112b38a676b6dcfbcdec72dcc778522a1538cdb9e04c537ce

See more details on using hashes here.

File details

Details for the file pyfmmlib-2019.1.1-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

  • Download URL: pyfmmlib-2019.1.1-cp36-cp36m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 975.3 kB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.6.2 requests-toolbelt/0.8.0 tqdm/4.29.0 CPython/3.7.3rc1

File hashes

Hashes for pyfmmlib-2019.1.1-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 bc330b2fb0487ab33cfa3039f10ad64000f7be063d9e13d339f156551e035fe8
MD5 1fb8bff2173d8c99ba4f639759a17caa
BLAKE2b-256 12e6614ef88bc66a4a210a2c33177f215518a7ad9ba04bf3477333a6da399384

See more details on using hashes here.

File details

Details for the file pyfmmlib-2019.1.1-cp36-cp36m-manylinux1_i686.whl.

File metadata

  • Download URL: pyfmmlib-2019.1.1-cp36-cp36m-manylinux1_i686.whl
  • Upload date:
  • Size: 818.7 kB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.6.2 requests-toolbelt/0.8.0 tqdm/4.29.0 CPython/3.7.3rc1

File hashes

Hashes for pyfmmlib-2019.1.1-cp36-cp36m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 276af73d2abd70a0449be95498c5f59edb35b7c8d1a37fab52123f3b41337025
MD5 1461256779432feb144c6a4764641548
BLAKE2b-256 69219c5534436efaae1de20f5b15561dc695243fcc6fee6ac64ee05666f4685b

See more details on using hashes here.

File details

Details for the file pyfmmlib-2019.1.1-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for pyfmmlib-2019.1.1-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 7e02bec83f434ed07ba83ee0d5e2a5917c1dcf11cfdbb5fa153fdad133024506
MD5 2035295b8237a60b3ec7a3d49f7615a3
BLAKE2b-256 581b12134fa2b3198f544372c8530fc0359c5051c91e0a255e91214701b99e2a

See more details on using hashes here.

File details

Details for the file pyfmmlib-2019.1.1-cp35-cp35m-manylinux1_x86_64.whl.

File metadata

  • Download URL: pyfmmlib-2019.1.1-cp35-cp35m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 975.5 kB
  • Tags: CPython 3.5m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.6.2 requests-toolbelt/0.8.0 tqdm/4.29.0 CPython/3.7.3rc1

File hashes

Hashes for pyfmmlib-2019.1.1-cp35-cp35m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 d7a207f6d1e27ae0cc72917ff59a70b43629eee32bfd4c4cdc6f803f2c3e2670
MD5 3d66db7b6f1611902c07efe685e05775
BLAKE2b-256 917074df520cedff084fee56df33d4b08f0354906606ca188fc714e973f8effd

See more details on using hashes here.

File details

Details for the file pyfmmlib-2019.1.1-cp35-cp35m-manylinux1_i686.whl.

File metadata

  • Download URL: pyfmmlib-2019.1.1-cp35-cp35m-manylinux1_i686.whl
  • Upload date:
  • Size: 822.2 kB
  • Tags: CPython 3.5m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.6.2 requests-toolbelt/0.8.0 tqdm/4.29.0 CPython/3.7.3rc1

File hashes

Hashes for pyfmmlib-2019.1.1-cp35-cp35m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 64fa40d4d8b08450c565c2608013c93bc8575f917ae3a7964f71fcf6abb8fc46
MD5 24013b0473edf8e4364be1a3d6ed1221
BLAKE2b-256 b1f900f76bfbe08100d071668b86c18c06e8bb5515a65b2552dd9811d91af2fb

See more details on using hashes here.

File details

Details for the file pyfmmlib-2019.1.1-cp34-cp34m-manylinux1_x86_64.whl.

File metadata

  • Download URL: pyfmmlib-2019.1.1-cp34-cp34m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 976.1 kB
  • Tags: CPython 3.4m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.6.2 requests-toolbelt/0.8.0 tqdm/4.29.0 CPython/3.7.3rc1

File hashes

Hashes for pyfmmlib-2019.1.1-cp34-cp34m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 e1a2fcda1f7fa8630f6a7f2ab7c24d9e01283328dde5450ee3e2d019334c3ed2
MD5 1297ce8c0f122afa40e1b841793e8b99
BLAKE2b-256 1694d1a1615d80328538b6b1526d1daa353ec25877defaa6f2b23c78e328dc44

See more details on using hashes here.

File details

Details for the file pyfmmlib-2019.1.1-cp34-cp34m-manylinux1_i686.whl.

File metadata

  • Download URL: pyfmmlib-2019.1.1-cp34-cp34m-manylinux1_i686.whl
  • Upload date:
  • Size: 822.6 kB
  • Tags: CPython 3.4m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.6.2 requests-toolbelt/0.8.0 tqdm/4.29.0 CPython/3.7.3rc1

File hashes

Hashes for pyfmmlib-2019.1.1-cp34-cp34m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 f3c028679fd066e4f71c2b4c57db116898a223b4f1cdecf1879cd7f40283f940
MD5 da4bbbe106e67d71641271d985850f71
BLAKE2b-256 f8e0afde9f6019ffd4904a19b54495604182d9371817429aa6045afc7106908f

See more details on using hashes here.

File details

Details for the file pyfmmlib-2019.1.1-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for pyfmmlib-2019.1.1-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 1f446ba30ae238debd9a4ed38019819c102ec8cb26793fcb5919ce15a1e51fad
MD5 0e8e8f7d86c5ffffbbc950d67ecf6b17
BLAKE2b-256 7d2d8772ff6bb27ad3051ab90e79dab1f5dbde9cdbde78c1345f47952ae00af6

See more details on using hashes here.

File details

Details for the file pyfmmlib-2019.1.1-cp27-cp27mu-manylinux1_x86_64.whl.

File metadata

  • Download URL: pyfmmlib-2019.1.1-cp27-cp27mu-manylinux1_x86_64.whl
  • Upload date:
  • Size: 973.6 kB
  • Tags: CPython 2.7mu
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.6.2 requests-toolbelt/0.8.0 tqdm/4.29.0 CPython/3.7.3rc1

File hashes

Hashes for pyfmmlib-2019.1.1-cp27-cp27mu-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 54bcc6adeef4744d8e23d00dc630394f2d337cf1a4b742c12b733075bbacd5bc
MD5 0de3fb778b9880fe3e26b2bb1e0cafb3
BLAKE2b-256 530078f0a48d313f568dedce7849b8a89873686a2cbb0b7d4df695ab0c7e4d2f

See more details on using hashes here.

File details

Details for the file pyfmmlib-2019.1.1-cp27-cp27mu-manylinux1_i686.whl.

File metadata

  • Download URL: pyfmmlib-2019.1.1-cp27-cp27mu-manylinux1_i686.whl
  • Upload date:
  • Size: 818.9 kB
  • Tags: CPython 2.7mu
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.6.2 requests-toolbelt/0.8.0 tqdm/4.29.0 CPython/3.7.3rc1

File hashes

Hashes for pyfmmlib-2019.1.1-cp27-cp27mu-manylinux1_i686.whl
Algorithm Hash digest
SHA256 6b22f953ed3c4fa1c2089dd402f7db7ce3a930440e9b147134cd040d0f32bd92
MD5 2c4a49198a1776abd9fbab7be4d49043
BLAKE2b-256 f8fc2605f5504ebc35e549d02efed395887796b9d0ce2bf82f72076ad861d7b9

See more details on using hashes here.

File details

Details for the file pyfmmlib-2019.1.1-cp27-cp27m-manylinux1_x86_64.whl.

File metadata

  • Download URL: pyfmmlib-2019.1.1-cp27-cp27m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 973.6 kB
  • Tags: CPython 2.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.6.2 requests-toolbelt/0.8.0 tqdm/4.29.0 CPython/3.7.3rc1

File hashes

Hashes for pyfmmlib-2019.1.1-cp27-cp27m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 c59f06db5a938800f3611787d7943cdc5eea30b7f230bf32241fe34a264e82f1
MD5 f3b68ffa0a7489066faae0f8425ed787
BLAKE2b-256 fba2c9d0c1915d1b6b06f9294dc6bc66d863528c43900fe9580fc3fc51da77de

See more details on using hashes here.

File details

Details for the file pyfmmlib-2019.1.1-cp27-cp27m-manylinux1_i686.whl.

File metadata

  • Download URL: pyfmmlib-2019.1.1-cp27-cp27m-manylinux1_i686.whl
  • Upload date:
  • Size: 818.9 kB
  • Tags: CPython 2.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.6.2 requests-toolbelt/0.8.0 tqdm/4.29.0 CPython/3.7.3rc1

File hashes

Hashes for pyfmmlib-2019.1.1-cp27-cp27m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 55e8220d75e3dab75848a079122cda770cc2da80d007f1ca80dcee0b797b34d7
MD5 217e0ef76ed3369f16208fa8b0343005
BLAKE2b-256 539f42a84f45ac01e6159a90a7f75a444453f6228ca3b243cc8be06851221b9d

See more details on using hashes here.

File details

Details for the file pyfmmlib-2019.1.1-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for pyfmmlib-2019.1.1-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 7fd20b792675108a98a7042a939f174904d8d6a1d2c4e45d00b111f00d7899f3
MD5 76a8727f75c496e75a116aab95a2316d
BLAKE2b-256 52d3c41fb08f52fa9db06cac1a5bf4bc8dd64345cac5304a6a9a207a647bfb1d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page