Skip to main content

PYthon GAUSSian Chemical Compuation Analysis

Project description

Pygauss is designed to be an API for parsing one or more input/output files from a Gaussian quantum chemical computation and provide functionality to assess molecular geometry and electronic distribution both visually and quantitatively.

It is built on top of the cclib/chemlab/chemview suite of packages and python scientific stack and is primarily designed to be used interactively in the IPython Notebook (within which this readme has been written). As shown below, a molecular optimisation can be assesed individually (much like in gaussview), but also as part of a group. The advantages of this package are then:

  • Faster, more efficient analysis

  • Reproducible analysis

  • Trend analysis

Detail instillation…

pip install pygauss

conda install -c http://conda.binstar.org/gabrielelanaro chemlab

You should then be able to start an ipython notebook…

from IPython.display import display
%matplotlib inline
import pygauss as pg
folder = pg.get_test_folder()

Single Molecule Analysis

A molecule can be created containg data about the inital geometry, optimisation process and analysis of the final configuration.

mol = pg.molecule.Molecule(folder,
                init_fname='CJS1_emim-cl_B_init.com',
                opt_fname=['CJS1_emim-cl_B_6-311+g-d-p-_gd3bj_opt-modredundant_difrz.log',
                           'CJS1_emim-cl_B_6-311+g-d-p-_gd3bj_opt-modredundant_difrz_err.log',
                           'CJS1_emim-cl_B_6-311+g-d-p-_gd3bj_opt-modredundant_unfrz.log'],
                freq_fname='CJS1_emim-cl_B_6-311+g-d-p-_gd3bj_freq_unfrz.log',
                nbo_fname='CJS1_emim-cl_B_6-311+g-d-p-_gd3bj_pop-nbo-full-_unfrz.log',
                alignto=[3,2,1])

#mol.show_initial(active=True)
display(mol.show_initial(zoom=0.5, rotations=[[0,0,90], [-90, 90, 0]]))
display(mol.show_optimisation(ball_stick=True, rotations=[[0,0,90], [-90, 90, 0]]))
https://github.com/chrisjsewell/PyGauss/raw/master/readme/output_6_0.png https://github.com/chrisjsewell/PyGauss/raw/master/readme/output_6_1.png

Basic analysis of optimisation…

print('Optimised? {0}, Conformer? {1}, Energy = {2} a.u.'.format(
    mol.is_optimised(), mol.is_conformer(), round(mol.get_optimisation_E(units='hartree'),3)))
ax = mol.plot_optimisation_E(units='hartree')
ax.get_figure().set_size_inches(3, 2)
Optimised? True, Conformer? True, Energy = -805.105 a.u.
https://github.com/chrisjsewell/PyGauss/raw/master/readme/output_8_1.png

Geometric analysis…

print 'Cl optimised polar coords from aromatic ring : ({0}, {1},{2})'.format(
    *[round(i, 2) for i in mol.calc_polar_coords_from_plane(20,3,2,1)])
ax = mol.plot_opt_trajectory(20, [3,2,1])
ax.set_title('Cl optimisation path')
ax.get_figure().set_size_inches(4, 3)
Cl optimised polar coords from aromatic ring : (0.11, -116.42,-170.06)
https://github.com/chrisjsewell/PyGauss/raw/master/readme/output_10_1.png

Potential Energy Scan analysis of geometric conformers…

mol2 = pg.molecule.Molecule(folder, alignto=[3,2,1],
            pes_fname=['CJS_emim_6311_plus_d3_scan.log',
                       'CJS_emim_6311_plus_d3_scan_bck.log'])
ax = mol2.plot_pes_scans([1,4,9,10], rotation=[0,0,90], img_pos='local_maxs', zoom=0.5)
ax.set_title('Ethyl chain rotational conformer analysis')
ax.get_figure().set_size_inches(7, 3)
https://github.com/chrisjsewell/PyGauss/raw/master/readme/output_12_0.png

Natural Bond Orbital and Second Order Perturbation Theory analysis…

print '+ve charge centre polar coords from aromatic ring: ({0} {1},{2})'.format(
    *[round(i, 2) for i in mol.calc_nbo_charge_center(3, 2, 1)])
display(mol.show_nbo_charges(ball_stick=True, axis_length=0.4,
                              rotations=[[0,0,90], [-90, 90, 0]]))
display(mol.show_SOPT_bonds(min_energy=15., rotations=[[0, 0, 90]]))
+ve charge centre polar coords from aromatic ring: (0.02 -51.77,-33.15)
https://github.com/chrisjsewell/PyGauss/raw/master/readme/output_14_1.png https://github.com/chrisjsewell/PyGauss/raw/master/readme/output_14_2.png

Multiple Computations Analysis

a

analysis = pg.analysis.Analysis(folder)
df, errors = analysis.add_runs(headers=['Cation', 'Anion', 'Initial'],
                               values=[['emim'], ['cl'],
                                       ['B', 'BE', 'BM', 'F', 'FE', 'FM']],
            init_pattern='CJS1_{0}-{1}_{2}_init.com',
            opt_pattern='CJS1_{0}-{1}_{2}_6-311+g-d-p-_gd3bj_opt-modredundant_unfrz.log',
            freq_pattern='CJS1_{0}-{1}_{2}_6-311+g-d-p-_gd3bj_freq_unfrz.log',
            nbo_pattern='CJS1_{0}-{1}_{2}_6-311+g-d-p-_gd3bj_pop-nbo-full-_unfrz.log')
print 'Read Errors:', errors
Read Errors: [{'Cation': 'emim', 'Initial': 'FM', 'Anion': 'cl'}]
analysis.add_mol_property('Opt', 'is_optimised')
analysis.add_mol_property('Energy (au)', 'get_optimisation_E', units='hartree')
analysis.add_mol_property('Cation chain, $\\psi$', 'calc_dihedral_angle', [1, 4, 9, 10])
analysis.add_mol_property('Cation Charge', 'calc_nbo_charge', range(1, 20))
analysis.add_mol_property('Anion Charge', 'calc_nbo_charge', [20])
analysis.add_mol_property(['Anion-Cation, $r$', 'Anion-Cation, $\\theta$', 'Anion-Cation, $\\phi$'],
                               'calc_polar_coords_from_plane', 3, 2, 1, 20)
analysis
  Anion Cation Initial   Opt  Energy (au)  Cation chain, $psi$  Cation Charge  Anion Charge  Anion-Cation, $r$  Anion-Cation, $theta$  Anion-Cation, $phi$
0    cl   emim       B  True     -805.105                80.794          0.888        -0.888              0.420                -123.392               172.515
1    cl   emim      BE  True     -805.105                80.622          0.887        -0.887              0.420                -123.449               172.806
2    cl   emim      BM  True     -805.104                73.103          0.874        -0.874              0.420                 124.121              -166.774
3    cl   emim       F  True     -805.118               147.026          0.840        -0.840              0.420                  10.393                 0.728
4    cl   emim      FE  True     -805.117                85.310          0.851        -0.851              0.417                 -13.254                -4.873

RadViz is a way of visualizing multi-variate data.

ax = analysis.plot_radviz_comparison('Anion', columns=range(4, 10))
https://github.com/chrisjsewell/PyGauss/raw/master/readme/output_20_0.png

The KMeans algorithm clusters data by trying to separate samples in n groups of equal variance

kwargs = {'mtype':'optimised', 'align_to':[3,2,1],
            'rotations':[[0, 0, 90], [-90, 90, 0]],
            'axis_length':0.3}
def show_groups(df):
    for cat, gf in df.groupby('Category'):
        print 'Category {0}:'.format(cat)
        mols = analysis.yield_mol_images(rows=gf.index.tolist(), **kwargs)
        for mol, row in zip(mols, gf.index.tolist()):
            print '(row {0})'.format(row)
            display(mol)
show_groups(analysis.calc_kmean_groups('Anion', 'cl', 4, columns=range(4, 10)))
Category 0:
(row 3)
https://github.com/chrisjsewell/PyGauss/raw/master/readme/output_22_1.png
Category 1:
(row 0)
https://github.com/chrisjsewell/PyGauss/raw/master/readme/output_22_3.png
(row 1)
https://github.com/chrisjsewell/PyGauss/raw/master/readme/output_22_5.png
Category 2:
(row 2)
https://github.com/chrisjsewell/PyGauss/raw/master/readme/output_22_7.png
Category 3:
(row 4)
https://github.com/chrisjsewell/PyGauss/raw/master/readme/output_22_9.png

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pygauss-0.1.14.zip (5.0 MB view details)

Uploaded Source

File details

Details for the file pygauss-0.1.14.zip.

File metadata

  • Download URL: pygauss-0.1.14.zip
  • Upload date:
  • Size: 5.0 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for pygauss-0.1.14.zip
Algorithm Hash digest
SHA256 ff00ba492afb0f1c707f7717c103770d2b3b1ba847a2719a1d2ae063037aa950
MD5 518a2d77d6b7c23a3cec61004f26ef80
BLAKE2b-256 6ec1d3eb558e633058e583c1d9c0f2d0a5a99157cc2ab0d7287640af779ac83b

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page