Skip to main content

Python API for Analysis of Gaussian Quantum Chemical Compuations

Project description

PyGauss is designed to be an API for parsing one or more input/output files from a Gaussian quantum chemical computation and provide functionality to assess molecular geometry and electronic distribution both visually and quantitatively.

It is built on top of the cclib/chemview/chemlab suite of packages and python scientific stack and is primarily designed to be used interactively in the IPython Notebook (within which this readme was created). As shown below, a molecular optimisation can be assesed individually (much like in gaussview), but also as part of a group. The advantages of this package are then:

  • Faster, more efficient analysis

  • Reproducible analysis

  • Trend analysis

Instillation

The Easy Way (OSX)

The recommended was to use pygauss is to download the Anaconda Scientific Python Distribution (64-bit). Once downloaded a new environment can be created in terminal and pygauss installed:

conda create -n pg_env python=2.7
conda install -c https://conda.binstar.org/cjs14 -n pg_env pygauss

The Middle Road (Linux)

There is currently no pygauss conda distributable for Linux, but there is for chemlab. So chemlab can be installed, then install a few dependancies that pip finds difficult / doesn’t have, and finally install pygauss using pip (make sure to activate the required environment)

conda create -n pg_env python=2.7
conda install -n pg_env -c https://conda.binstar.org/cjs14 chemlab
conda install -n pg_env <pil, pandas, matplotlib, scikit-learn>
activate pg_env
pip install pygauss

The Hard Way (Windows)

There is currently no pygauss conda distributable for Windows or for chemlab which has C-extensions that need to be built using a compiler. Therfore it will need to be cloned from GitHub. the extensions built, dependancies installed and finally installed.

conda create -n pg_env python=2.7
conda install -n pg_env -c https://conda.binstar.org/cjs14 cclib
conda install -n pg_env -c https://conda.binstar.org/cjs14 chemview
conda install -n pg_env -c https://conda.binstar.org/cjs14 pyopengl
git clone --recursive https://github.com/chemlab/chemlab.git
cd chemlab
python setup.py build_ext --inplace
conda install -n pg_env <pil, pandas, matplotlib, scikit-learn, ...>
activate pg_env
pip install . # or add to PYTHONPATH
pip install pygauss

If you encounter difficulties it may be useful for you to look in working_conda_environments at conda environments known to work.

Example Assessment

You should then be able to open an assessment in IPython Notebook starting with the following:

from IPython.display import display
%matplotlib inline
import pygauss as pg
folder = pg.get_test_folder()
pg.__version__
'0.2.1'

Single Molecule Analysis

A molecule can be created containg data about the inital geometry, optimisation process and analysis of the final configuration. Molecules can be viewed statically or interactively (not currently supported by Firefox).

mol = pg.molecule.Molecule(folder,
                init_fname='CJS1_emim-cl_B_init.com',
                opt_fname=['CJS1_emim-cl_B_6-311+g-d-p-_gd3bj_opt-modredundant_difrz.log',
                           'CJS1_emim-cl_B_6-311+g-d-p-_gd3bj_opt-modredundant_difrz_err.log',
                           'CJS1_emim-cl_B_6-311+g-d-p-_gd3bj_opt-modredundant_unfrz.log'],
                freq_fname='CJS1_emim-cl_B_6-311+g-d-p-_gd3bj_freq_unfrz.log',
                nbo_fname='CJS1_emim-cl_B_6-311+g-d-p-_gd3bj_pop-nbo-full-_unfrz.log',
                alignto=[3,2,1])

#mol.show_initial(active=True)
display(mol.show_initial(zoom=0.5, rotations=[[0,0,90], [-90, 90, 0]]))
display(mol.show_optimisation(ball_stick=True, rotations=[[0,0,90], [-90, 90, 0]]))
https://github.com/chrisjsewell/PyGauss/raw/master/readme_images/output_8_0.png https://github.com/chrisjsewell/PyGauss/raw/master/readme_images/output_8_1.png

Basic analysis of optimisation…

print('Optimised? {0}, Conformer? {1}, Energy = {2} a.u.'.format(
    mol.is_optimised(), mol.is_conformer(), round(mol.get_optimisation_E(units='hartree'),3)))
ax = mol.plot_optimisation_E(units='hartree')
ax.get_figure().set_size_inches(3, 2)
Optimised? True, Conformer? True, Energy = -805.105 a.u.
https://github.com/chrisjsewell/PyGauss/raw/master/readme_images/output_10_1.png

Geometric analysis…

print 'Cl optimised polar coords from aromatic ring : ({0}, {1},{2})'.format(
    *[round(i, 2) for i in mol.calc_polar_coords_from_plane(20,3,2,1)])
ax = mol.plot_opt_trajectory(20, [3,2,1])
ax.set_title('Cl optimisation path')
ax.get_figure().set_size_inches(4, 3)
Cl optimised polar coords from aromatic ring : (0.11, -116.42,-170.06)
https://github.com/chrisjsewell/PyGauss/raw/master/readme_images/output_12_1.png

Potential Energy Scan analysis of geometric conformers…

mol2 = pg.molecule.Molecule(folder, alignto=[3,2,1],
            pes_fname=['CJS_emim_6311_plus_d3_scan.log',
                       'CJS_emim_6311_plus_d3_scan_bck.log'])
ax = mol2.plot_pes_scans([1,4,9,10], rotation=[0,0,90], img_pos='local_maxs', zoom=0.5)
ax.set_title('Ethyl chain rotational conformer analysis')
ax.get_figure().set_size_inches(7, 3)
https://github.com/chrisjsewell/PyGauss/raw/master/readme_images/output_14_0.png

Natural Bond Orbital and Second Order Perturbation Theory analysis…

print '+ve charge centre polar coords from aromatic ring: ({0} {1},{2})'.format(
    *[round(i, 2) for i in mol.calc_nbo_charge_center(3, 2, 1)])
display(mol.show_nbo_charges(ball_stick=True, axis_length=0.4,
                              rotations=[[0,0,90], [-90, 90, 0]]))
display(mol.show_SOPT_bonds(min_energy=15., rotations=[[0, 0, 90]]))
+ve charge centre polar coords from aromatic ring: (0.02 -51.77,-33.15)
https://github.com/chrisjsewell/PyGauss/raw/master/readme_images/output_16_1.png https://github.com/chrisjsewell/PyGauss/raw/master/readme_images/output_16_2.png

Multiple Computations Analysis

Multiple computations, for instance of different starting conformations, can be grouped into an Analysis class.

analysis = pg.analysis.Analysis(folder)
df, errors = analysis.add_runs(headers=['Cation', 'Anion', 'Initial'],
                               values=[['emim'], ['cl'],
                                       ['B', 'BE', 'BM', 'F', 'FE', 'FM']],
            init_pattern='CJS1_{0}-{1}_{2}_init.com',
            opt_pattern='CJS1_{0}-{1}_{2}_6-311+g-d-p-_gd3bj_opt-modredundant_unfrz.log',
            freq_pattern='CJS1_{0}-{1}_{2}_6-311+g-d-p-_gd3bj_freq_unfrz.log',
            nbo_pattern='CJS1_{0}-{1}_{2}_6-311+g-d-p-_gd3bj_pop-nbo-full-_unfrz.log')
print 'Read Errors:', errors
Read Errors: [{'Cation': 'emim', 'Initial': 'FM', 'Anion': 'cl'}]

The methods mentioned for indivdiual molecules can then be applied to all or a subset of these computations.

analysis.add_mol_property_subset('Opt', 'is_optimised', rows=[2,3])
analysis.add_mol_property('Energy (au)', 'get_optimisation_E', units='hartree')
analysis.add_mol_property('Cation chain, $\\psi$', 'calc_dihedral_angle', [1, 4, 9, 10])
analysis.add_mol_property('Cation Charge', 'calc_nbo_charge', range(1, 20))
analysis.add_mol_property('Anion Charge', 'calc_nbo_charge', [20])
analysis.add_mol_property(['Anion-Cation, $r$', 'Anion-Cation, $\\theta$', 'Anion-Cation, $\\phi$'],
                               'calc_polar_coords_from_plane', 3, 2, 1, 20)
analysis
  Anion Cation Initial   Opt  Energy (au)  Cation chain, $psi$  Cation Charge  Anion Charge  Anion-Cation, $r$  Anion-Cation, $theta$  Anion-Cation, $phi$
0    cl   emim       B   NaN     -805.105                80.794          0.888        -0.888              0.420                -123.392               172.515
1    cl   emim      BE   NaN     -805.105                80.622          0.887        -0.887              0.420                -123.449               172.806
2    cl   emim      BM  True     -805.104                73.103          0.874        -0.874              0.420                 124.121              -166.774
3    cl   emim       F  True     -805.118               147.026          0.840        -0.840              0.420                  10.393                 0.728
4    cl   emim      FE   NaN     -805.117                85.310          0.851        -0.851              0.417                 -13.254                -4.873

NEW FEATURE: there is now an option (requiring pdflatex and ghostscript+imagemagik) to output the tables as a latex formatted image.

analysis.get_table(row_index=['Anion', 'Cation', 'Initial'],
                   column_index=['Cation', 'Anion', 'Anion-Cation'],
                   as_image=True, im_exe='convert_pdf')
https://github.com/chrisjsewell/PyGauss/raw/master/readme_images/output_23_0.png

RadViz is a way of visualizing multi-variate data.

ax = analysis.plot_radviz_comparison('Anion', columns=range(4, 10))
https://github.com/chrisjsewell/PyGauss/raw/master/readme_images/output_25_0.png

The KMeans algorithm clusters data by trying to separate samples in n groups of equal variance.

kwargs = {'mtype':'optimised', 'align_to':[3,2,1],
            'rotations':[[0, 0, 90], [-90, 90, 0]],
            'axis_length':0.3}
def show_groups(df):
    for cat, gf in df.groupby('Category'):
        print 'Category {0}:'.format(cat)
        mols = analysis.yield_mol_images(rows=gf.index.tolist(), **kwargs)
        for mol, row in zip(mols, gf.index.tolist()):
            print '(row {0})'.format(row)
            display(mol)
show_groups(analysis.calc_kmean_groups('Anion', 'cl', 4, columns=range(4, 10)))
Category 0:
(row 2)
https://github.com/chrisjsewell/PyGauss/raw/master/readme_images/output_27_1.png
Category 1:
(row 0)
https://github.com/chrisjsewell/PyGauss/raw/master/readme_images/output_27_3.png
(row 1)
https://github.com/chrisjsewell/PyGauss/raw/master/readme_images/output_27_5.png
Category 2:
(row 4)
https://github.com/chrisjsewell/PyGauss/raw/master/readme_images/output_27_7.png
Category 3:
(row 3)
https://github.com/chrisjsewell/PyGauss/raw/master/readme_images/output_27_9.png

MORE TO COME!!

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pygauss-0.2.1.zip (5.0 MB view hashes)

Uploaded Source

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page