Skip to main content

Great Circle calculations in Python using Vincenty's formulae

Project description

pygc
====

Great Circle calculations in Python using Vincenty's formulae


### Great Circle
```python
from pygc import great_circle
```

##### New point from initial point, distance, and azimuth
```python
great_circle(distance=111000, azimuth=65, latitude=30, longitude=-74)
{'latitude': 30.41900364921926,
'longitude': -72.952930949727573,
'reverse_azimuth': 245.52686122611451}
```

##### Three new points in three different angles from an initial point
```python
great_circle(distance=[100000, 200000, 300000], azimuth=[90, 180, -90], latitude=30, longitude=-74)
{'latitude': array([29.99592067, 28.1955554, 29.96329797]),
'longitude': array([-72.96361148, -74., -77.10848799]),
'reverse_azimuth': array([270.51817296, 360., 88.44633085])}
```

##### Three point south of three initial points (longitude shouldn't change much)
```python
great_circle(distance=[100000, 200000, 300000], azimuth=180, latitude=30, longitude=[-74, -75, -76])
{'latitude': array([29.09783841, 28.1955554, 27.29315337]),
'longitude': array([-74., -75., -76.]),
'reverse_azimuth': array([360., 360., 360.])}
```

##### Three point west of three initial points (latitude shouldn't change much)
```python
great_circle(distance=[100000, 200000, 300000], azimuth=270, latitude=[30, 31, 32], longitude=-74)
{'latitude': array([ 29.99592067, 30.98302388, 31.96029484]),
'longitude': array([-75.03638852, -76.09390011, -77.17392199]),
'reverse_azimuth': array([ 89.48182704, 88.92173899, 88.31869938])}
```


##### Starburst pattern around a point
```python
great_circle(distance=100000, azimuth=[0, 60, 120, 180, 240, 300], latitude=30, longitude=-74)
{'latitude': array([ 30.90203788, 30.44794729, 29.54590235, 29.09783841, 29.54590235, 30.44794729]),
'longitude': array([-74., -73.09835956, -73.10647702, -74., -74.89352298, -74.90164044]),
'reverse_azimuth': array([ 180., 240.45387965, 300.44370186, 360., 59.55629814, 119.54612035])}
```


### Great Distance
```python
from pygc import great_distance
```

##### Distance and angle between two points
```python
great_distance(start_latitude=30, start_longitude=-74, end_latitude=40, end_longitude=-74)
{'azimuth': 0.0, 'distance': 63564833.462465033, 'reverse_azimuth': 180.0}
```

##### Distance and angle between two sets of points
```python
great_distance(start_latitude=[30, 35], start_longitude=[-74, -79], end_latitude=[40, 45], end_longitude=[-74, -79])
{'azimuth': array([0., 0.]),
'distance': array([63564833.46246503, 63618453.36677702]),
'reverse_azimuth': array([180., 180.])}
```

##### Distance and angle between initial point and three end points
```python
great_distance(start_latitude=30, start_longitude=-74, end_latitude=[40, 45, 50], end_longitude=[-74, -74, -74])
{'azimuth': array([0., 0., 0.]),
'distance': array([6.35648335e+07, 9.53877888e+07, 1.27238665e+08]),
'reverse_azimuth': array([180., 180., 180.])}
```


## Source

Algrothims from Geocentric Datum of Australia Technical Manual

http://www.anzlic.org.au/icsm/gdatum/chapter4.html (Page is no longer
available)

Computations on the Ellipsoid

There are a number of formulae that are available
to calculate accurate geodetic positions,
azimuths and distances on the ellipsoid.

Vincenty's formulae (Vincenty, 1975) may be used
for lines ranging from a few cm to nearly 20,000 km,
with millimetre accuracy.
The formulae have been extensively tested
for the Australian region, by comparison with results
from other formulae (Rainsford, 1955 & Sodano, 1965).

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pygc-0.1.tar.gz (5.6 kB view details)

Uploaded Source

File details

Details for the file pygc-0.1.tar.gz.

File metadata

  • Download URL: pygc-0.1.tar.gz
  • Upload date:
  • Size: 5.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for pygc-0.1.tar.gz
Algorithm Hash digest
SHA256 61e9accb90155c6aafcc25c2457a704622aa461bae97d3f37e60bfc1a58a6b5f
MD5 b17c494085e0aa9f31c7cc88329eedef
BLAKE2b-256 f9c9b5414912ca4b48c099631974ecd1a4a509ed7510b2234078027a4aed3d61

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page