pygeofilter is a pure Python parser implementation of OGC filtering standards
Project description
pygeofilter
pygeofilter is a pure Python parser implementation of OGC filtering standards
Features
- Parsing of several filter encoding standards
- Several backends included
- Django
- SQLAlchemy
- (Geo)Pandas
- Native Python objects
Installation
The package can be installed via PIP:
pip install pygeofilter
Some features require additional dependencies. This currently only affects the backends. To install these, the features have to be listed:
# for the Django backend
pip install pygeofilter[backend-django]
# for the sqlalchemy backend
pip install pygeofilter[backend-sqlalchemy]
# for the native backend
pip install pygeofilter[backend-native]
Usage
pygeofilter can be used on various levels. It provides parsers for various filtering languages, such as ECQL or CQL-JSON. Each parser lives in its own sub-package:
>>> from pygeofilter.parsers.ecql import parse as parse_ecql
>>> filters = parse_ecql(filter_expression)
>>> from pygeofilter.parsers.cql_json import parse as parse_json
>>> filters = parse_json(filter_expression)
Each parser creates an abstract syntax tree (AST) representation of that filter expression and thus unifies all possible languages to a single common denominator. All possible nodes are defined as classes in the pygeofilter.ast
module.
Inspection
The easiest way to inspect the resulting AST is to use the get_repr
function, which returns a
nice string representation of what was parsed:
>>> filters = pygeofilter.parsers.ecql.parse('id = 10')
>>> print(pygeofilter.get_repr(ast))
ATTRIBUTE id = LITERAL 10.0
>>>
>>>
>>> filter_expr = '(number BETWEEN 5 AND 10 AND string NOT LIKE \'%B\') OR INTERSECTS(geometry, LINESTRING(0 0, 1 1))'
>>> print(pygeofilter.ast.get_repr(pygeofilter.parse(filter_expr)))
(
(
ATTRIBUTE number BETWEEN 5 AND 10
) AND (
ATTRIBUTE string NOT LIKE '%B'
)
) OR (
INTERSECTS(ATTRIBUTE geometry, Geometry(geometry={'type': 'LineString', 'coordinates': ((0.0, 0.0), (1.0, 1.0))}))
)
Evaluation
A parsed AST can then be evaluated and transformed into filtering mechanisms in the required context. Usually this is a language such as SQL or an object-relational mapper (ORM) interfacing a data store of some kind.
There are a number of pre-defined backends available, where parsed expressions can be applied. For the moment this includes:
- Django
- sqlalchemy
- (Geo)Pandas
- Pure Python object filtering
The usage of those are described in their own documentation.
pygeofilter provides mechanisms to help building such an evaluator (the included backends use them as well). The Evaluator
class allows to conveniently walk through an AST depth-first and build the filters for the API in question. Only handled node classes are evaluated, unsupported ones will raise an exception.
Consider this example:
from pygeofilter import ast
from pygeofilter.backends.evaluator import Evaluator, handle
from myapi import filters # <- this is where the filters are created.
# of course, this can also be done in the
# evaluator itself
# Evaluators must derive from the base class `Evaluator` to work
class MyAPIEvaluator(Evaluator):
# you can use any constructor as you need
def __init__(self, field_mapping=None, mapping_choices=None):
self.field_mapping = field_mapping
self.mapping_choices = mapping_choices
# specify the handled classes in the `handle` decorator to mark
# this function as the handler for that node class(es)
@handle(ast.Not)
def not_(self, node, sub):
return filters.negate(sub)
# multiple classes can be declared for the same handler function
@handle(ast.And, ast.Or)
def combination(self, node, lhs, rhs):
return filters.combine((lhs, rhs), node.op.value)
# handle all sub-classes, like ast.Equal, ast.NotEqual,
# ast.LessThan, ast.GreaterThan, ...
@handle(ast.Comparison, subclasses=True)
def comparison(self, node, lhs, rhs):
return filters.compare(
lhs,
rhs,
node.op.value,
self.mapping_choices
)
@handle(ast.Between)
def between(self, node, lhs, low, high):
return filters.between(
lhs,
low,
high,
node.not_
)
@handle(ast.Like)
def like(self, node, lhs):
return filters.like(
lhs,
node.pattern,
node.nocase,
node.not_,
self.mapping_choices
)
@handle(ast.In)
def in_(self, node, lhs, *options):
return filters.contains(
lhs,
options,
node.not_,
self.mapping_choices
)
def adopt(self, node, *sub_args):
# a "catch-all" function for node classes that are not
# handled elsewhere. Use with caution and raise exceptions
# yourself when a node class is not supported.
...
# ...further ast handlings removed for brevity
Testing
For testing, several requirements must be satisfied. These can be installed, via pip:
pip install -r requirements-dev.txt
pip install -r requirements-test.txt
The basic functionality can be tested using pytest
.
python -m pytest
Some backends require a bit more to be tested. This is how the Django backend is tested:
cd tests/django_test
python manage.py test testapp
cd -
Similarly the sqlalchemy backend must be tested in that way:
cd tests/sqlalchemy_test/
python -m unittest
cd -
Django integration
For Django there is a default backend implementation, where all the filters are translated to the
Django ORM. In order to use this integration, we need two dictionaries, one mapping the available
fields to the Django model fields, and one to map the fields that use choices
. Consider the
following example models:
from django.contrib.gis.db import models
optional = dict(null=True, blank=True)
class Record(models.Model):
identifier = models.CharField(max_length=256, unique=True, null=False)
geometry = models.GeometryField()
float_attribute = models.FloatField(**optional)
int_attribute = models.IntegerField(**optional)
str_attribute = models.CharField(max_length=256, **optional)
datetime_attribute = models.DateTimeField(**optional)
choice_attribute = models.PositiveSmallIntegerField(choices=[
(1, 'ASCENDING'),
(2, 'DESCENDING'),],
**optional)
class RecordMeta(models.Model):
record = models.ForeignKey(Record, on_delete=models.CASCADE, related_name='record_metas')
float_meta_attribute = models.FloatField(**optional)
int_meta_attribute = models.IntegerField(**optional)
str_meta_attribute = models.CharField(max_length=256, **optional)
datetime_meta_attribute = models.DateTimeField(**optional)
choice_meta_attribute = models.PositiveSmallIntegerField(choices=[
(1, 'X'),
(2, 'Y'),
(3, 'Z')],
**optional)
Now we can specify the field mappings and mapping choices to be used when applying the filters:
FIELD_MAPPING = {
'identifier': 'identifier',
'geometry': 'geometry',
'floatAttribute': 'float_attribute',
'intAttribute': 'int_attribute',
'strAttribute': 'str_attribute',
'datetimeAttribute': 'datetime_attribute',
'choiceAttribute': 'choice_attribute',
# meta fields
'floatMetaAttribute': 'record_metas__float_meta_attribute',
'intMetaAttribute': 'record_metas__int_meta_attribute',
'strMetaAttribute': 'record_metas__str_meta_attribute',
'datetimeMetaAttribute': 'record_metas__datetime_meta_attribute',
'choiceMetaAttribute': 'record_metas__choice_meta_attribute',
}
MAPPING_CHOICES = {
'choiceAttribute': dict(Record._meta.get_field('choice_attribute').choices),
'choiceMetaAttribute': dict(RecordMeta._meta.get_field('choice_meta_attribute').choices),
}
Finally we are able to connect the CQL AST to the Django database models. We also provide factory functions to parse the timestamps, durations, geometries and envelopes, so that they can be used with the ORM layer:
from pygeofilter.backends.django import to_filter
from pygeofilter.parsers.ecql import parse
cql_expr = 'strMetaAttribute LIKE \'%parent%\' AND datetimeAttribute BEFORE 2000-01-01T00:00:01Z'
ast = parse(cql_expr)
filters = to_filter(ast, mapping, mapping_choices)
qs = Record.objects.filter(**filters)
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
Hashes for pygeofilter-0.0.0-py3-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 9e5db6afcaf843ee809a601534d16307ca1006c3866412ea7056e8d465b9898f |
|
MD5 | 08a9d6901f22d64c12a6a79c6642c641 |
|
BLAKE2b-256 | b7dbba4315363b3a9dcefa8eb24df2bd24656e506b1e4c7c07625f6295eefeda |