Skip to main content

GEOS wrapped in numpy ufuncs

Project description

Documentation Status Github Actions status Travis CI status PyPI Anaconda Zenodo

PyGEOS is a C/Python library with vectorized geometry functions. The geometry operations are done in the open-source geometry library GEOS. PyGEOS wraps these operations in NumPy ufuncs providing a performance improvement when operating on arrays of geometries.

Important note: PyGEOS was merged with Shapely (https://shapely.readthedocs.io) in December 2021 and will be released as part of Shapely 2.0. The development will take place at the Shapely repository. Please raise issues or create pull request over there. PyGEOS itself will receive updates (by backporting from the Shapely repository) until Shapely 2.0 is actually released.

What is a ufunc?

A universal function (or ufunc for short) is a function that operates on n-dimensional arrays in an element-by-element fashion, supporting array broadcasting. The for-loops that are involved are fully implemented in C diminishing the overhead of the Python interpreter.

Multithreading

PyGEOS functions support multithreading. More specifically, the Global Interpreter Lock (GIL) is released during function execution. Normally in Python, the GIL prevents multiple threads from computing at the same time. PyGEOS functions internally releases this constraint so that the heavy lifting done by GEOS can be done in parallel, from a single Python process.

Examples

Compare an grid of points with a polygon:

>>> geoms = points(*np.indices((4, 4)))
>>> polygon = box(0, 0, 2, 2)

>>> contains(polygon, geoms)

  array([[False, False, False, False],
         [False,  True, False, False],
         [False, False, False, False],
         [False, False, False, False]])

Compute the area of all possible intersections of two lists of polygons:

>>> from pygeos import box, area, intersection

>>> polygons_x = box(range(5), 0, range(10, 15), 10)
>>> polygons_y = box(0, range(5), 10, range(10, 15))

>>> area(intersection(polygons_x[:, np.newaxis], polygons_y[np.newaxis, :]))

array([[100.,  90.,  80.,  70.,  60.],
     [ 90.,  81.,  72.,  63.,  54.],
     [ 80.,  72.,  64.,  56.,  48.],
     [ 70.,  63.,  56.,  49.,  42.],
     [ 60.,  54.,  48.,  42.,  36.]])

See the documentation for more: https://pygeos.readthedocs.io

References

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pygeos-0.13.tar.gz (141.1 kB view details)

Uploaded Source

Built Distributions

pygeos-0.13-cp310-cp310-win_amd64.whl (1.4 MB view details)

Uploaded CPython 3.10 Windows x86-64

pygeos-0.13-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

pygeos-0.13-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.1 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

pygeos-0.13-cp310-cp310-macosx_11_0_arm64.whl (1.1 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pygeos-0.13-cp310-cp310-macosx_10_9_universal2.whl (2.2 MB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64)

pygeos-0.13-cp39-cp39-win_amd64.whl (1.4 MB view details)

Uploaded CPython 3.9 Windows x86-64

pygeos-0.13-cp39-cp39-win32.whl (1.3 MB view details)

Uploaded CPython 3.9 Windows x86

pygeos-0.13-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

pygeos-0.13-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl (2.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686

pygeos-0.13-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

pygeos-0.13-cp39-cp39-macosx_11_0_arm64.whl (1.1 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pygeos-0.13-cp39-cp39-macosx_10_9_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

pygeos-0.13-cp39-cp39-macosx_10_9_universal2.whl (2.2 MB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

pygeos-0.13-cp38-cp38-win_amd64.whl (1.4 MB view details)

Uploaded CPython 3.8 Windows x86-64

pygeos-0.13-cp38-cp38-win32.whl (1.3 MB view details)

Uploaded CPython 3.8 Windows x86

pygeos-0.13-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

pygeos-0.13-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl (2.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686

pygeos-0.13-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

pygeos-0.13-cp38-cp38-macosx_11_0_arm64.whl (1.1 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pygeos-0.13-cp38-cp38-macosx_10_9_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

pygeos-0.13-cp38-cp38-macosx_10_9_universal2.whl (2.2 MB view details)

Uploaded CPython 3.8 macOS 10.9+ universal2 (ARM64, x86-64)

pygeos-0.13-cp37-cp37m-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.7m Windows x86-64

pygeos-0.13-cp37-cp37m-win32.whl (1.3 MB view details)

Uploaded CPython 3.7m Windows x86

pygeos-0.13-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

pygeos-0.13-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl (2.3 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ i686

pygeos-0.13-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.0 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

pygeos-0.13-cp37-cp37m-macosx_10_9_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

pygeos-0.13-cp36-cp36m-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.6m Windows x86-64

pygeos-0.13-cp36-cp36m-win32.whl (1.3 MB view details)

Uploaded CPython 3.6m Windows x86

pygeos-0.13-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

pygeos-0.13-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl (2.3 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ i686

pygeos-0.13-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.0 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ ARM64

pygeos-0.13-cp36-cp36m-macosx_10_9_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file pygeos-0.13.tar.gz.

File metadata

  • Download URL: pygeos-0.13.tar.gz
  • Upload date:
  • Size: 141.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.8.13

File hashes

Hashes for pygeos-0.13.tar.gz
Algorithm Hash digest
SHA256 1c373078aad5a2efed1c39cd71c797aa2033bf3087f35f7516bac89be50b9861
MD5 66246bfb13ebe39e94eb31dc8d40067f
BLAKE2b-256 9b981a2e667ee870dc28fa187c4d38cc2ef94af8adac18c1997d87f99a428eb7

See more details on using hashes here.

File details

Details for the file pygeos-0.13-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: pygeos-0.13-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for pygeos-0.13-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 8b50e92ea862bacd5c0d267d99a0123616c18048864b46d840e4b141e24606ba
MD5 22e435f13caf98fcb29319fc3cdc5c3e
BLAKE2b-256 1d3f66713742a1dfaca37531b82d1084839a4cf2b37a907ca3ae69ac9015eeb9

See more details on using hashes here.

File details

Details for the file pygeos-0.13-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pygeos-0.13-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 44a2a70ce6bf5636526bc8ed0e10ca29f6327493eff013f81093fb200340a5f9
MD5 8f588e98e8e7b770cf4cbbc635146bac
BLAKE2b-256 5d4f4d4ac1d5f34e39371066f9bff17374623b82857b026584c648c672f47ca5

See more details on using hashes here.

File details

Details for the file pygeos-0.13-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pygeos-0.13-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 451453f58f80677f6b5ed7ffd3cdd34602015a9e089d08e082b327446978ebfa
MD5 c875cd3671c8cb455c3ba232ececa1d4
BLAKE2b-256 2781d85b03876c891e6e8955c0c7b520fe232743b7436c8a61a1a924aa29841b

See more details on using hashes here.

File details

Details for the file pygeos-0.13-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pygeos-0.13-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 45c3274760d0210ed90fef4125468ec0b857b4c5e795df5fbea2f5f1adfdb0a9
MD5 d73f913abe1c8c861c6d906a8fe5ac07
BLAKE2b-256 135b564ade76abe1528daf6214348ea40e5fe564531d90d3dcb027eae1abef1b

See more details on using hashes here.

File details

Details for the file pygeos-0.13-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for pygeos-0.13-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 b513217a90c379d86061aac36fb900ee94a0eb18c4beda4db67930f82ffd51ec
MD5 6778a384ea3a32cd28f1a7c997d8bb4b
BLAKE2b-256 00155c96fee7312657acce48df003147825e8178a6a98ae1255269b7ea8455ca

See more details on using hashes here.

File details

Details for the file pygeos-0.13-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: pygeos-0.13-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for pygeos-0.13-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 9dfd408f14aff092128d9b222e0c841ee50066127b011330768b244f902c2f9f
MD5 30e3fcc9238e27cdd1013de97492a9b0
BLAKE2b-256 fea0b5898b5eaf47fef2828c2d703e4236f281c460e6519f1df6da6e30d07f01

See more details on using hashes here.

File details

Details for the file pygeos-0.13-cp39-cp39-win32.whl.

File metadata

  • Download URL: pygeos-0.13-cp39-cp39-win32.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for pygeos-0.13-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 62d5e370f9ee5abd15adea5ab1a6c563d895579c870eb242b1e692c5bd09b3ab
MD5 0aae1430db1d79eacc15ac53da9a0be9
BLAKE2b-256 3d82c94b62fd2a8b4d0046f8f2fd1e0aa0618e6f4f6674cad50d619fd2bfe94e

See more details on using hashes here.

File details

Details for the file pygeos-0.13-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pygeos-0.13-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 92a5e9a7b90a1a2e6a6396cf90ec050c95573ab8084b2ec25e2fcab76ce4ee1a
MD5 f1acf0117c98791bf067c1075377fbb8
BLAKE2b-256 70ef567ff6f07e97137c1cb36caa49a21052be492519f5ce766017cff0f58d38

See more details on using hashes here.

File details

Details for the file pygeos-0.13-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pygeos-0.13-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 f3984eb67921d251340bc83108307d67ec40e0dc4ca7edab55f8cf1453840803
MD5 50ff67f0297f85eda517fb0b684499de
BLAKE2b-256 cc2bc5321769c01492903869e33377e7542b3434a7dc16e8436b55052dbd7413

See more details on using hashes here.

File details

Details for the file pygeos-0.13-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pygeos-0.13-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 0997291e207968f44012e1decb28bd1447a89cb7427048fe101531b0f95112ac
MD5 46f3810ca4d6993017d5dfb1dedc835e
BLAKE2b-256 51976aa3c9d829fb08f13ee34f075cbfcf7042f77797dd8e782cf643b69e7292

See more details on using hashes here.

File details

Details for the file pygeos-0.13-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pygeos-0.13-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 b864299145d7e706e9ed7c7243f6c0e93815bb4505443f8ceb3717c10db71c91
MD5 f22c55996f4bd6f6b9845f1f67460171
BLAKE2b-256 24ceaf2e0508189a3dcbc64750121f3d61bc2bff3be360ff644ac47657827c86

See more details on using hashes here.

File details

Details for the file pygeos-0.13-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pygeos-0.13-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 d61ecaa5d23b8437a3218712eaaf90a3528740304ab547e7b9e15335d2f02b1c
MD5 05c20602cf8860d7eead4883feb5dc8e
BLAKE2b-256 00899d8afdebf75387fbcd657d638dee5d43c1c7889b6317405a249dcc6da8f8

See more details on using hashes here.

File details

Details for the file pygeos-0.13-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for pygeos-0.13-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 e855ed8a0831e9c302c92bc460bd099436e41303ced4fccac2fe66e5fc9a5878
MD5 d17baa9f8ff6f42b5b31f1cd9d4efefb
BLAKE2b-256 03d78429275458802f68f03a720c6bf4d694decaee472a8a0f9ddf2c4ce0f904

See more details on using hashes here.

File details

Details for the file pygeos-0.13-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: pygeos-0.13-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for pygeos-0.13-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 2909f578ce715fed90b8d5ab09e26a976c696ee612d28a78b322f4f3cb8f7d22
MD5 d801a04998382a76f40a9db3305dfbd5
BLAKE2b-256 aaafc4884ec2063870092f97c4f2de608815797cacd0a49954019c89a01280f3

See more details on using hashes here.

File details

Details for the file pygeos-0.13-cp38-cp38-win32.whl.

File metadata

  • Download URL: pygeos-0.13-cp38-cp38-win32.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for pygeos-0.13-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 b4b55a70dc3e8670e17db09eef5f1d86660ad4a834760072d24ea2d66472037a
MD5 7e1fb78c96da067dbd34272bf05547da
BLAKE2b-256 e10dda35e8bbff9aa4c5bdfd74bdec7c2aea9f9f34e58ca9cdafa5d918abb387

See more details on using hashes here.

File details

Details for the file pygeos-0.13-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pygeos-0.13-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ffeebff660d8716feb782085cb339ddb162a6fe3c2753f9335b44b6c75dce633
MD5 9f7c51e1c2bffc3bcf92d2971f6b181a
BLAKE2b-256 26490787f650c808d672828d884a0365a9aec0e75082773b62c71395ba30125d

See more details on using hashes here.

File details

Details for the file pygeos-0.13-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pygeos-0.13-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 c65969e6946c9afb301116f31bdfe6c1b63295b5aed3f8547b441e0aa7b25f0b
MD5 ad92e562e5d0cfb423603c692c3e871f
BLAKE2b-256 79cc17cdc74576c31fe0c52cfbddd24ccb2328adcbfbf6efc9b29bd3a5450df8

See more details on using hashes here.

File details

Details for the file pygeos-0.13-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pygeos-0.13-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 75a0bdce19a6c69d74f93eacbca74f8db25062974c205cc79d9aa6e9129a1e4f
MD5 e676a1efbdf1edb2da77f8788e36a438
BLAKE2b-256 4edb7f8ba9921eb25ab746ede6bfb6e7d2286cbb0255b300e62c3127b8c70686

See more details on using hashes here.

File details

Details for the file pygeos-0.13-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pygeos-0.13-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 e0c4a58ce042b28a5ee74e784e5cfbafc6a4c32f27041ff065df9ee39eab6f81
MD5 2b5d12bf8c3f3b0de7faeffd743584f0
BLAKE2b-256 5516177ffad7fee35dc21ecbf2b20145743dcd4f2cb4b870be02675750d97149

See more details on using hashes here.

File details

Details for the file pygeos-0.13-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pygeos-0.13-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 8b5e2a30fb4603a9645b0fff85627fd39a577d4d9488daa8830f1c2e877f41f3
MD5 86d8c29c1f0c5340581258d76b2bf5b8
BLAKE2b-256 4fb7d56235dadfc6cf349a367a55c956ee1da3f627b0ef16a7db3fed3ce8619f

See more details on using hashes here.

File details

Details for the file pygeos-0.13-cp38-cp38-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for pygeos-0.13-cp38-cp38-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 abb3b5d40d36c6d4e3079097b18df45e9d67cd440396e1ecb43a8ce851ce7bf6
MD5 74548fd1ecee169640b20d2cc5554e37
BLAKE2b-256 4421f050571d34ce6b1ec3719d8630fd4e879a7571c1cc79c725ad5580eea178

See more details on using hashes here.

File details

Details for the file pygeos-0.13-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: pygeos-0.13-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for pygeos-0.13-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 13db6b1ebfd877df201802d150a79c401f7e758cbd4b0962e150618c400cc9a5
MD5 85ffb979ea4ec84c87709fed82dfa954
BLAKE2b-256 d3853bcfbea0656290bb216cc30dfe1757d7eb14eace826d55067cfa724ab982

See more details on using hashes here.

File details

Details for the file pygeos-0.13-cp37-cp37m-win32.whl.

File metadata

  • Download URL: pygeos-0.13-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for pygeos-0.13-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 2b352b2907bc0e8c1c2de8e3e703b7313239cc038b382645fe17283ef2ec3f63
MD5 fb42c686455d72ab37090085e726429e
BLAKE2b-256 c4da880147b2739f25071dece4edfa97be85494b642b9e8c196b44bec170f593

See more details on using hashes here.

File details

Details for the file pygeos-0.13-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pygeos-0.13-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7e38b471afbbb81264aad2b2924c12f5479b85d9cb1fd00fbd94c567d50b6a28
MD5 5d3df41a49e809b70d63fa39838021bc
BLAKE2b-256 dd982d286e79ee5acb6263ec0db165acdd9438f3d7fde91d4b05db99c8407eec

See more details on using hashes here.

File details

Details for the file pygeos-0.13-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pygeos-0.13-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 05a932918fcde92b6124db74be26a385d84e779aeff2ddb944ebd2ed4fdea957
MD5 216fad5a258375c44cda179afd924947
BLAKE2b-256 e453a9e55d586e0cd01ff3e03d49b6df6bdef943b57601b87083e230e65e9d26

See more details on using hashes here.

File details

Details for the file pygeos-0.13-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pygeos-0.13-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 c2a998360f2cb75538ffde773af214f0eda7486d60bf49b4360bbeeb7433e362
MD5 b45b141f70c5798d56cbd51dc155a45e
BLAKE2b-256 e64c5e2c9d64159286be24d481047bbf4cb2c752eed7084a619b4bb4d80d9ddd

See more details on using hashes here.

File details

Details for the file pygeos-0.13-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pygeos-0.13-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 087de7e96c4b70786b7cba1aa153f8e91c171bcbc92a3b68f24e4dc8781801e2
MD5 8f2c35a444395f5f54caa48491fefb90
BLAKE2b-256 3a964b7797d9ec0bbaf6ef7456df4eda4eb1117946629d665d8c25980101552a

See more details on using hashes here.

File details

Details for the file pygeos-0.13-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: pygeos-0.13-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for pygeos-0.13-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 f6d0c9f77fe63272e092104539398e2597af6d1bf24235370ca2d12c2191d3b0
MD5 7b20206bf4ab1f82f65dae8b6ce8904b
BLAKE2b-256 7b95eb602c84d0e9d9d0cd74f8db4dcb4f84083191cdaa31c4bdc1407854ed2f

See more details on using hashes here.

File details

Details for the file pygeos-0.13-cp36-cp36m-win32.whl.

File metadata

  • Download URL: pygeos-0.13-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for pygeos-0.13-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 17ad6fc301e96d7c6dedff1ad5fc67724c2a4de552aa255a554ca08d06ca6c79
MD5 0c0573c4f33f2c44250f680a9556208c
BLAKE2b-256 6d48e6adf80396d9edca31ce5abc46da8e226356c09b679fe48a770a84ebafa6

See more details on using hashes here.

File details

Details for the file pygeos-0.13-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pygeos-0.13-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 81f8e36307d26797f07097de19881a068b390e9b948871dd788c0fa7d5983435
MD5 e1060ae43826c396b9e1d57554aa65c7
BLAKE2b-256 054c23ed1804980382f698c1073a750a0ff21a55309cb4b7eb7f642acec8b142

See more details on using hashes here.

File details

Details for the file pygeos-0.13-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pygeos-0.13-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 6140271ee3c32e9127e020d304f144290a33449f802fa3d93ac4ac51879d016c
MD5 44cad9a3836856cdf87a3df309b775d8
BLAKE2b-256 11e0a36f0c8daaf71e2630c3bdc0d422decf2203e272bf057d07db02e2e95ab4

See more details on using hashes here.

File details

Details for the file pygeos-0.13-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pygeos-0.13-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 a9f59ec132ace8dd40f8ed2e37f848a902349eae387c592ceabda3f0bd2e1f6b
MD5 b4a8b9b611a69692cc65bcd41ca041d2
BLAKE2b-256 3b424a4aa9110d6336f3362b16cd1354a6d1c92d20c0d96c89e3316579126d4d

See more details on using hashes here.

File details

Details for the file pygeos-0.13-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pygeos-0.13-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 e1e87c92cb09f013159349999b7da9efc13b9ec5f75ac9cb30a7d0211d9be14c
MD5 62330cbb31bbdf0d1931ad155362a9a8
BLAKE2b-256 41c5ab5f63cbe9edfb3d65ddfd23315cecbf3ec04a5ba7c3391039931bcb258e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page