Skip to main content

Assign labels to emails in Google Mail based on their similarity to other emails assigned to the same label.

Project description

Sort your emails automatically

Python package Coverage Status Code style: black

The pygmailsorter is a python module to automate the filtering of emails on the Google mail service using the their API. It assigns labels to emails based on their similarity to other emails assigned to the same label.

Motivation

Many people struggle with the increasing email volume leading to hundreds of unread emails. As the capabilities of even the best search engine are limited when it comes to large numbers of emails, the only way to keep an overview is filing emails into folders. The manual work of filing emails into folders is tedious, still most people are too lazy to create email filters and keep their email filters up to date. Finally, in the age of mobile computing when most people access their emails from their smartphone, the challenge of sorting emails is more relevant than ever.

The solution to this challenge is to automatically filter emails depending on their similarity to existing emails in a given folder. This solution was already proposed in a couple of research papers ranging from the filtering of spam emails 1 to the specific case of sorting emails into folders 2. Even a couple of open source prototypes were available like 3 and 4.

This is basically a similar approach specific to the Google Mail API. It is a python script, which can be executed periodically for example with a cron task to sort the emails for the user.

Installation

The pygmailsorter is available on the conda-forge or pypi repositories and can be installed using either:

conda install -c conda-forge pygmailsorter

or alternatively:

pip install pygmailsorter

Configuration

The pygmailsorter requires two steps of configuration:

  • The user has to create a Google Mail API credentials file credentials.json following the Google Mail API documentation.
  • Access to an SQL database, this can be provided as connection string, alternatively pygmailsorter is going to use a local SQLite database named email.db located in the current directory. This results in the following connection string: sqlite:///email.db

Python interface

Import the Gmail class and the function load_client_secrets_file from the pygmailsorter module

from pygmailsorter import Gmail, load_client_secrets_file

Initialize pygmailsorter

Create a gmail object from the Gmail() class:

gmail = Gmail(
    client_config=load_client_secrets_file(
        client_secrets_file="/absolute/path/to/credentials.json"
    ),
    connection_str="sqlite:////absolute/path/to/email.db",
)

Based on the configuration from the previous section, the function load_client_secrets_file is used to load the credentials.json file and provide its content as python dictionary to the client_config parameter of the Gmail() class. In addition to the client_config parameter the Gmail() class also requires a connection to an SQL database which is provided as connection_str. Finally, as optional parameter the port can be specified which is used to authenticate the Google Mail API via a web browser, by default this 8080.

Sync local database with email account

To reduce the communication overhead, the emails are stored locally in an SQLite database.

gmail.update_database(quick=False)

By setting the optional flag quick to True only new emails are downloaded while changes to existing emails are ignored.

Generate pandas dataframe for emails

Load all emails from the local SQLite database and combine them in a pandas DataFrame for further postprocessing:

df = gmail.get_all_emails_in_database()

Download specific label from email server

Download emails with the label "MyLabel" from the email server:

df = gmail.download_emails_for_label(label="MyLabel")

In this case the emails are not stored in the local SQLite database.

Filter emails using machine learning

Assign new email labels to the emails with the label "MyLabel":

gmail.filter_messages_from_server
    label="MyLabel",
    recommendation_ratio=0.9,
)

This functionality is based on the download_emails_for_label() function above. It checks the server for new emails for a selected label "MyLabel". Then reloads the machine learning model from the local SQLite database and trys to predict the correct labels for these emails. The recommendation_ratio defines the level of certainty required to actually move the email, with 0.9 equalling a certainty of 90%.

Command Line interface

The command line interface implements the same functionality as the Python interface, it supports the following options:

  • pygmailsorter -c/--credentials path to credentials file provided by Google e.g. credentials.json .
  • pygmailsorter -d/--database connection string to connect to database e.g. sqlite:///email.db .
  • pygmailsorter -u/--update update the local email database and retrain the machine learning model.
  • pygmailsorter -l/--label=MyLabel assign new labels to the emails with label MyLabel.
  • pygmailsorter -p/--port port for authentication webserver to run e.g. 8080 .

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pygmailsorter-0.0.3.tar.gz (35.1 kB view details)

Uploaded Source

Built Distribution

pygmailsorter-0.0.3-py3-none-any.whl (26.3 kB view details)

Uploaded Python 3

File details

Details for the file pygmailsorter-0.0.3.tar.gz.

File metadata

  • Download URL: pygmailsorter-0.0.3.tar.gz
  • Upload date:
  • Size: 35.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.15

File hashes

Hashes for pygmailsorter-0.0.3.tar.gz
Algorithm Hash digest
SHA256 3398ae79e1a9a3becb7584b88c7243079e68df2f29227754e7995736e21f2473
MD5 4847c7a5bb6f9925029dc9d9bf340aac
BLAKE2b-256 0a926dfe74141fafb681869f5185f2d2089907afae905fa3b20a091b38e1458a

See more details on using hashes here.

File details

Details for the file pygmailsorter-0.0.3-py3-none-any.whl.

File metadata

File hashes

Hashes for pygmailsorter-0.0.3-py3-none-any.whl
Algorithm Hash digest
SHA256 d2f15d93b08518b1911e375924770667acec9d1867fd65b249b3c93ad348f1fe
MD5 3f716a51081ffa69e2586ae519e3722e
BLAKE2b-256 67bbf76485b961fd45a83528594809bb6f3bf1e4776239f07eda721a50bc8a27

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page