Skip to main content

pyhdf: Python interface to the NCSA HDF4 library.

Project description

The pyhdf package wraps the functionality of the NCSA HDF version 4 library inside a Python OOP framework. The SD (scientific dataset), VS (Vdata) and V (Vgroup) APIs are currently implemented. SD datasets are read/written through numpy arrays. NetCDF files can also be read and modified with pyhdf.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyhdf-0.10.4.tar.gz (147.6 kB view details)

Uploaded Source

Built Distributions

pyhdf-0.10.4-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (489.0 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pyhdf-0.10.4-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (489.0 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pyhdf-0.10.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (739.8 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

pyhdf-0.10.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (739.8 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

pyhdf-0.10.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (732.3 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

pyhdf-0.10.4-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (703.3 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

pyhdf-0.10.4-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (703.3 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

File details

Details for the file pyhdf-0.10.4.tar.gz.

File metadata

  • Download URL: pyhdf-0.10.4.tar.gz
  • Upload date:
  • Size: 147.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.9.12

File hashes

Hashes for pyhdf-0.10.4.tar.gz
Algorithm Hash digest
SHA256 ea09b2bdafc9be0f7f43d72ff122d8efbde61881f4da3a659b33be5e29215f93
MD5 1051039ae0f474405767a380dd0cbbc4
BLAKE2b-256 3ffc8b3c5d8552b3ee64a114dc428a1d8f86521eb9a2388257332db01dc5ac3b

See more details on using hashes here.

Provenance

File details

Details for the file pyhdf-0.10.4-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyhdf-0.10.4-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9d3e43bcb23ff3831ca0e4e0ed86d8dd9d05fa96f15d13f5ee44f3a428c86b86
MD5 ae189806e0c5eb04280ba06ba8d61932
BLAKE2b-256 4053fe7a7c2b6bb6c7d4e20482d85c8f9dcea9fa0b0202c967938d55d451a5e4

See more details on using hashes here.

Provenance

File details

Details for the file pyhdf-0.10.4-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyhdf-0.10.4-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 fdd6a1a2298c653aac89d512c1b0a06492541ea9c532612669f6f9dd5be33aed
MD5 ece116f03a1b37c9ecb6a3018f52d455
BLAKE2b-256 010059a7c0a8c6bb5351307cc624c3a7f0961a3db4d00e2a97978c8e7a489b85

See more details on using hashes here.

Provenance

File details

Details for the file pyhdf-0.10.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyhdf-0.10.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 dfbc8beb00b7eaaaeabd3d91c9b524e1efa6d430ff9fb5026da24950b41545b0
MD5 bccd4646a2c5cae018e6eff042e57fa3
BLAKE2b-256 f83a620e761ccc23b7c6e16809efc9461812082ad2dd5623e35e04fba4e41507

See more details on using hashes here.

Provenance

File details

Details for the file pyhdf-0.10.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyhdf-0.10.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 681f98345e4198d7b00504c216ac80de05854fb26e075f7e33fe5cc9c8871cdf
MD5 e4137db62b2a90a16410092e19780d81
BLAKE2b-256 242118e4b8a3429c59ad8599ce39ed9680b81ff29d43aad34f2ac8e5244fa939

See more details on using hashes here.

Provenance

File details

Details for the file pyhdf-0.10.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyhdf-0.10.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e64a98cb6f020fa464c200293351edc342850c10896c60497f344df5f2d06680
MD5 c4eb967a05bdd67d235adb902d239594
BLAKE2b-256 31a37c3d5f3bdc7e2722ee912116fbe5c764e0288f2b139ae02b3231cb1c1273

See more details on using hashes here.

Provenance

File details

Details for the file pyhdf-0.10.4-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyhdf-0.10.4-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d712dbc7261cf3370a3fde9e99d0a91730e624152ef6f5ea7d88625cabce25b7
MD5 80d2a532a41bd8672af9e64cd5b01560
BLAKE2b-256 269c53d0b495394780f2f7dc0eb890b667647d1818af8f0f928774b650923539

See more details on using hashes here.

Provenance

File details

Details for the file pyhdf-0.10.4-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyhdf-0.10.4-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 891b198de378ad72f9b37572da2bb4ac3baf785a57f7ff09ed480f04886fe5d6
MD5 307e13b1a1f82189c9f1f8c3681cfb07
BLAKE2b-256 a978ccb47b5e58b3b771b6dffd2b11ca6bb1e6748b90b33340abc84f58a01dc1

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page