Skip to main content

pyhdf: Python interface to the NCSA HDF4 library.

Project description

The pyhdf package wraps the functionality of the NCSA HDF version 4 library inside a Python OOP framework. The SD (scientific dataset), VS (Vdata) and V (Vgroup) APIs are currently implemented. SD datasets are read/written through numpy arrays. NetCDF files can also be read and modified with pyhdf.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyhdf-0.10.5.tar.gz (149.5 kB view details)

Uploaded Source

Built Distributions

pyhdf-0.10.5-pp38-pypy38_pp73-win_amd64.whl (546.9 kB view details)

Uploaded PyPy Windows x86-64

pyhdf-0.10.5-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (489.0 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pyhdf-0.10.5-pp38-pypy38_pp73-macosx_10_9_x86_64.whl (533.5 kB view details)

Uploaded PyPy macOS 10.9+ x86-64

pyhdf-0.10.5-pp37-pypy37_pp73-win_amd64.whl (546.8 kB view details)

Uploaded PyPy Windows x86-64

pyhdf-0.10.5-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (489.0 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pyhdf-0.10.5-pp37-pypy37_pp73-macosx_10_9_x86_64.whl (533.5 kB view details)

Uploaded PyPy macOS 10.9+ x86-64

pyhdf-0.10.5-cp310-cp310-win_amd64.whl (546.9 kB view details)

Uploaded CPython 3.10 Windows x86-64

pyhdf-0.10.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (739.8 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

pyhdf-0.10.5-cp310-cp310-macosx_10_9_x86_64.whl (541.2 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

pyhdf-0.10.5-cp39-cp39-win_amd64.whl (546.9 kB view details)

Uploaded CPython 3.9 Windows x86-64

pyhdf-0.10.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (739.8 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

pyhdf-0.10.5-cp39-cp39-macosx_10_9_x86_64.whl (541.2 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

pyhdf-0.10.5-cp38-cp38-win_amd64.whl (546.6 kB view details)

Uploaded CPython 3.8 Windows x86-64

pyhdf-0.10.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (732.3 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

pyhdf-0.10.5-cp38-cp38-macosx_10_9_x86_64.whl (541.5 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

pyhdf-0.10.5-cp37-cp37m-win_amd64.whl (545.5 kB view details)

Uploaded CPython 3.7m Windows x86-64

pyhdf-0.10.5-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (703.3 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

pyhdf-0.10.5-cp37-cp37m-macosx_10_9_x86_64.whl (540.6 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

pyhdf-0.10.5-cp36-cp36m-win_amd64.whl (549.9 kB view details)

Uploaded CPython 3.6m Windows x86-64

pyhdf-0.10.5-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (703.2 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

pyhdf-0.10.5-cp36-cp36m-macosx_10_9_x86_64.whl (540.6 kB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file pyhdf-0.10.5.tar.gz.

File metadata

  • Download URL: pyhdf-0.10.5.tar.gz
  • Upload date:
  • Size: 149.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.9.12

File hashes

Hashes for pyhdf-0.10.5.tar.gz
Algorithm Hash digest
SHA256 6c539080642366c665f4208aa603e31b517f8f28c08ea8cd2bcc57c97faa953e
MD5 d974c3e83315188de233e4a7ed258675
BLAKE2b-256 d6d1988d4ec926624576cf216388d34fe2067e724c2ba26cbb0ccc7c0cb8623e

See more details on using hashes here.

Provenance

File details

Details for the file pyhdf-0.10.5-pp38-pypy38_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for pyhdf-0.10.5-pp38-pypy38_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 7a26250ac42369c338c137d3ff4eab98a00fed55d1ad5a776f244e21fca6e420
MD5 312182f45deecab3521960178396bf04
BLAKE2b-256 c8ee451dd3aabc9feb068de77018f16f6ddd1ac93f196f3cdf2be1f152098169

See more details on using hashes here.

Provenance

File details

Details for the file pyhdf-0.10.5-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyhdf-0.10.5-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1631095e8149ac4367d7c51920b39edba1e53227409ed8d2dbc8083e5aa8f292
MD5 6a17cd69cbbee23d99d92ed7809c68dc
BLAKE2b-256 15b351e30d18d5a8dc9c2e8017bd93927f7ca2c1aaf01d91d6a170cda6b06213

See more details on using hashes here.

Provenance

File details

Details for the file pyhdf-0.10.5-pp38-pypy38_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyhdf-0.10.5-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 f2c8e41bf3f05dd7984a97c5caa6067a700f3bce38d0ebbd212f03c49b69e3bb
MD5 80abedbe891aa09ce8737fc3faea471f
BLAKE2b-256 aa2874f065203dab387141689be93fb0958a653db376ba55c72007eea0ab873f

See more details on using hashes here.

Provenance

File details

Details for the file pyhdf-0.10.5-pp37-pypy37_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for pyhdf-0.10.5-pp37-pypy37_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 46f895ad0c2430ab3289f634d9ae3bdfa3c07faf75f354a91b173ae212b54908
MD5 b1dbcc812ff46d1f1d2b39be1b8a545b
BLAKE2b-256 95a039c3bcc9531054b15e88821c7b835a78f5508e6451d2cdb0f63b41e73923

See more details on using hashes here.

Provenance

File details

Details for the file pyhdf-0.10.5-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyhdf-0.10.5-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5537e0b652459e4fa15f18f86b27b5d7646bd05ca81402a35a3c67d07dcebfd2
MD5 0c7f9b7e147125574e0627a378dcf69d
BLAKE2b-256 585e4d5bf2fa5eb28f4ca93c54bb3cb56038e95774e7ea9d148a8229faa65964

See more details on using hashes here.

Provenance

File details

Details for the file pyhdf-0.10.5-pp37-pypy37_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyhdf-0.10.5-pp37-pypy37_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 dc55d8f9f869dbfd6c19d2ffec516eaad2160af5d101aa7fde6c8b0edd03763c
MD5 b4944254513fd83bc72ada5f36b086bd
BLAKE2b-256 51016a8abee841281a749720c42930929d6ad49aea7d76b5b81eef591eecbea1

See more details on using hashes here.

Provenance

File details

Details for the file pyhdf-0.10.5-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: pyhdf-0.10.5-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 546.9 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.9.12

File hashes

Hashes for pyhdf-0.10.5-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 d65ec1011ea1f6232b935eeb16dc7f3e7bb8bf3fb875c8e4b4b2807376055cff
MD5 668606aa1a98c512b384f91ec0d61f00
BLAKE2b-256 2fcef27ac01624bfe56a0278728b612748ab097851536a30a2f09a533abc479d

See more details on using hashes here.

Provenance

File details

Details for the file pyhdf-0.10.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyhdf-0.10.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f99f86d8c53d582e4343f3831e7170010b34947218ba889fdb57eb6fd465b4a1
MD5 5223add9cb7059a37aa843a2c44edc43
BLAKE2b-256 b34a80b30b0c437b767d0e24de80ad6630fbbe806af264ec8c00478cd06cd182

See more details on using hashes here.

Provenance

File details

Details for the file pyhdf-0.10.5-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyhdf-0.10.5-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 0b61dcbe6cb18d4f657480ceb4b5f3fb4f212b904ad44713df8c4eeec31e5aa1
MD5 6711f9b80094d402e3818cbd23b09519
BLAKE2b-256 4ccb92b0351f71cb7acae3c959a3e546200cd7120bc3b72688e052a10b03a383

See more details on using hashes here.

Provenance

File details

Details for the file pyhdf-0.10.5-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: pyhdf-0.10.5-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 546.9 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.9.12

File hashes

Hashes for pyhdf-0.10.5-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 5fa98eea3f672471f027831462b13f2dbba627d9d939b6d3fae1c9309a8d6281
MD5 278dfe58f667f84f38934c7bdfde1182
BLAKE2b-256 b295c3f7862a6ff8087cdaec4cf0b14215753996768358bef1cf27b1f06284e2

See more details on using hashes here.

Provenance

File details

Details for the file pyhdf-0.10.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyhdf-0.10.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ef8e038caf183e1558b2916b7579dad08c0d04d26a478c567b4df9030c8be5e6
MD5 506598b64f225b8b54473604be7d302b
BLAKE2b-256 4a1d4d5aefd47b4b6ae8fd90d37d4bd2b4143ce02e9a1b6ab5c934289d00763a

See more details on using hashes here.

Provenance

File details

Details for the file pyhdf-0.10.5-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyhdf-0.10.5-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 cf8a94ea546cd4d6e6650f163cf90a3c9dde01156e3aa522696000dc04ddce23
MD5 5605c8d2ca85114386ea13d2d4d08469
BLAKE2b-256 04fec95faae31a913bd616568aa7d13884a0951fb1c9847cdc9c0aca5adfd670

See more details on using hashes here.

Provenance

File details

Details for the file pyhdf-0.10.5-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: pyhdf-0.10.5-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 546.6 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.9.12

File hashes

Hashes for pyhdf-0.10.5-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 74570e63a52382d0c4373493b0471eea406540bc136814568c4a718fe7ae5b7d
MD5 a05d07130a3b005a8568453e7baef9cf
BLAKE2b-256 5e9ff50ae5837c0c693b34d388edb0f3c33988d634bf8d20282e582c33e2871e

See more details on using hashes here.

Provenance

File details

Details for the file pyhdf-0.10.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyhdf-0.10.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 eac79a314c30885c722614bb7c624e6c4f490ea8829f175cae29e1663da75f59
MD5 5643583af9761f185114801ae138793e
BLAKE2b-256 e7d582cdd6f34527756ce1327a0fa5865879867d8925f9dab89c2e45bb0867a2

See more details on using hashes here.

Provenance

File details

Details for the file pyhdf-0.10.5-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyhdf-0.10.5-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 3d6546857740d6a9dbe511c0e42d3ccaf721640b19856828691428e8e09d0046
MD5 46106d8fa0697e0dcff64b9d8c9867d0
BLAKE2b-256 d075052d193c339d8d7cdec6ad4a6148da721e8a4c664b77eb39adf34743443a

See more details on using hashes here.

Provenance

File details

Details for the file pyhdf-0.10.5-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: pyhdf-0.10.5-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 545.5 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.9.12

File hashes

Hashes for pyhdf-0.10.5-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 48da88581133ecfb4dce0e5d7a3bca020178274423c4f6d2ef1d39b5a0373fb8
MD5 e5d88a73a1a6788fbb82f8e47cbfdd9a
BLAKE2b-256 0e4f12f39428a1bb9bf8bf182262935e30bb2327bfc267b2ed4c82a44cf621bd

See more details on using hashes here.

Provenance

File details

Details for the file pyhdf-0.10.5-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyhdf-0.10.5-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 59fdacee5bf2ed34f544bc45ef8e014eb067d462abb245662bc62608e0b549aa
MD5 23f6cf0e7052cdb9a18a2fb69b3ec220
BLAKE2b-256 ffbd3dc14aded1a6e50e546fa4110eb55cad67a9cdc8978e2f011b68b0e6280d

See more details on using hashes here.

Provenance

File details

Details for the file pyhdf-0.10.5-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyhdf-0.10.5-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 6011285468da4cacf11dc72995a36f421e4638e8f66da96b44bc0ae2320e6d1c
MD5 69c1e15dd3e1aefd0ee810602d979ef1
BLAKE2b-256 7f78940da0940f5e636d3355442ba612a1ce47c3b8094d043dace03bd97958b7

See more details on using hashes here.

Provenance

File details

Details for the file pyhdf-0.10.5-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: pyhdf-0.10.5-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 549.9 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.9.12

File hashes

Hashes for pyhdf-0.10.5-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 d05fab188544165f966b2c2aec89b0ca477dd7c15c72f6a636b1598d429eb762
MD5 d72e1cad44fc3345d4429a69f61e0998
BLAKE2b-256 9ba56cd7862edd3fe5c6c22bdbd9ee9f7a4d44d13bb506dab05c09957ebbbeaf

See more details on using hashes here.

Provenance

File details

Details for the file pyhdf-0.10.5-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyhdf-0.10.5-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c430466c78f2eea7f8a880bd29ce04164393f96c950e9acbb964483f5de278f7
MD5 7d0913d8a85359a83b67240cfb630ac5
BLAKE2b-256 55132e2a6100998020efbd5017f2c510deb673b067990353b714510619ff6244

See more details on using hashes here.

Provenance

File details

Details for the file pyhdf-0.10.5-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyhdf-0.10.5-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 03631a98a26d67d91ca854184a30280b7b68afb3e181176bd231d3bbbae6a470
MD5 2cc8e631468ee7c8c86cf28a746b98e0
BLAKE2b-256 160f943d125872f991e113abaf9007b57dc22dd046899ba2936dbfa3722db747

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page