Skip to main content

Python interface to the NCSA HDF4 library

Project description

Tests Pypi build Anaconda-Server Badge

pyhdf

pyhdf is a python wrapper around the NCSA HDF version 4 library. The SD (Scientific Dataset), VS (Vdata) and V (Vgroup) API's are currently implemented. NetCDF files can also be read and modified. It supports both Python 2 and Python 3.

Note: The sourceforge pyhdf website and project are out-of-date. The original author of pyhdf have abandoned the project and it is currently maintained in github.

Version 0.9.x was called python-hdf4 in PyPI because at that time we didn't have access to the pyhdf package in PyPI. For version 0.10.0 and onward, please install pyhdf instead of python-hdf4.

Installation

See pyhdf installation instructions or doc/install.rst.

Documentation

See pyhdf documentation.

Additional documentation on the HDF4 format can be found in the HDF4 Support Page.

Examples

Example python programs using the pyhdf package can be found inside the examples/ subdirectory.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyhdf-0.11.1.tar.gz (146.6 kB view details)

Uploaded Source

Built Distributions

pyhdf-0.11.1-pp38-pypy38_pp73-win_amd64.whl (186.8 kB view details)

Uploaded PyPy Windows x86-64

pyhdf-0.11.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (538.9 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pyhdf-0.11.1-pp38-pypy38_pp73-macosx_10_9_x86_64.whl (621.7 kB view details)

Uploaded PyPy macOS 10.9+ x86-64

pyhdf-0.11.1-pp37-pypy37_pp73-win_amd64.whl (186.7 kB view details)

Uploaded PyPy Windows x86-64

pyhdf-0.11.1-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (538.8 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pyhdf-0.11.1-pp37-pypy37_pp73-macosx_10_9_x86_64.whl (621.6 kB view details)

Uploaded PyPy macOS 10.9+ x86-64

pyhdf-0.11.1-cp310-cp310-win_amd64.whl (186.7 kB view details)

Uploaded CPython 3.10 Windows x86-64

pyhdf-0.11.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (771.4 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

pyhdf-0.11.1-cp310-cp310-macosx_10_9_x86_64.whl (629.1 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

pyhdf-0.11.1-cp39-cp39-win_amd64.whl (186.7 kB view details)

Uploaded CPython 3.9 Windows x86-64

pyhdf-0.11.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (771.2 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

pyhdf-0.11.1-cp39-cp39-macosx_10_9_x86_64.whl (629.1 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

pyhdf-0.11.1-cp38-cp38-win_amd64.whl (186.7 kB view details)

Uploaded CPython 3.8 Windows x86-64

pyhdf-0.11.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (764.5 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

pyhdf-0.11.1-cp38-cp38-macosx_10_9_x86_64.whl (629.4 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

pyhdf-0.11.1-cp37-cp37m-win_amd64.whl (185.8 kB view details)

Uploaded CPython 3.7m Windows x86-64

pyhdf-0.11.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (762.1 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

pyhdf-0.11.1-cp37-cp37m-macosx_10_9_x86_64.whl (629.0 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file pyhdf-0.11.1.tar.gz.

File metadata

  • Download URL: pyhdf-0.11.1.tar.gz
  • Upload date:
  • Size: 146.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.4

File hashes

Hashes for pyhdf-0.11.1.tar.gz
Algorithm Hash digest
SHA256 03ae263687868ea7b39f3f28984088b69b5cd252ec67b9f5d0e390a1d7a386eb
MD5 75b670bc4a243b95d9199ca91406d5b3
BLAKE2b-256 69de7d85cec17f874120067b6b82360eea2215044b4feae73a1eaa843ad2f953

See more details on using hashes here.

Provenance

File details

Details for the file pyhdf-0.11.1-pp38-pypy38_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for pyhdf-0.11.1-pp38-pypy38_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 aec02687129c99b09a3efb929445ae0879aa0ff058126cdbfc668357576b17d8
MD5 ecf8c9a37a3fb0e1f4da30143ee6c1ae
BLAKE2b-256 65d517a78d1ace40ec0ecdd60a296a180b58e6b617d1e48239848753726f2de7

See more details on using hashes here.

Provenance

File details

Details for the file pyhdf-0.11.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyhdf-0.11.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 fc6fe34284c30ab6be5f93eb580e6c32d02f69587faf78576a2e8bf1e6609cd1
MD5 2ffca3fd61c7ad3ac3326f8d11422bfd
BLAKE2b-256 16bc619870237c2d925ed9537561fbcdefc7cfaa302dffa301e0641b2ed1e493

See more details on using hashes here.

Provenance

File details

Details for the file pyhdf-0.11.1-pp38-pypy38_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyhdf-0.11.1-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 9af53ac94f2414d586250f9a9df5b26c7121460e61a48895ced120ddfc190903
MD5 116298c60751b7abf71ec19c411421c2
BLAKE2b-256 34af21c295c955720f3e9d27b3f17f215f3dd365f76ec5a7c69aefa358acb70a

See more details on using hashes here.

Provenance

File details

Details for the file pyhdf-0.11.1-pp37-pypy37_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for pyhdf-0.11.1-pp37-pypy37_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 9d99bdd54611ce21db0740a85cd613a76a707aea062fe9cb2b08c30cd02903f2
MD5 d2bdc5b9da07349ed9a24ee0c9302071
BLAKE2b-256 cf74c33e6506f4a2a4bbc1066c23b1308d7b79c5bf93e16e2e23242a6cbb3daf

See more details on using hashes here.

Provenance

File details

Details for the file pyhdf-0.11.1-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyhdf-0.11.1-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c27cbef75f8eff9d1443da7e66a681dd58923aac59c72f96f2ed6f0ad519f9b8
MD5 aabcb99d8705226240e0506d2f244d4d
BLAKE2b-256 588a04c6d38c46c0f951fc2ae5c76252dea6ca7e295ca9926d68a0bff5f0d0b8

See more details on using hashes here.

Provenance

File details

Details for the file pyhdf-0.11.1-pp37-pypy37_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyhdf-0.11.1-pp37-pypy37_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 7e4007b3a99822d27f3a06326b5d0e80d426e9fe9210a37a91f0186fd302190d
MD5 4dbf30c21abf91dc475908f7e020e17e
BLAKE2b-256 5b17979fd9faf9c754faecf595c50d68a76c52a7e32b80a90f83a10efd09ab22

See more details on using hashes here.

Provenance

File details

Details for the file pyhdf-0.11.1-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: pyhdf-0.11.1-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 186.7 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.4

File hashes

Hashes for pyhdf-0.11.1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 62088cfb80b5b13590f29a2cab92dfd44b6bb7b43872b075a4c9b43b1f696c60
MD5 41ed4ee14a951a94cd41693a5f57ec78
BLAKE2b-256 741bf2cffd2ecf37efea3cf6674997190cce1a458d65a8d9a82129bdb02a4962

See more details on using hashes here.

Provenance

File details

Details for the file pyhdf-0.11.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyhdf-0.11.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ffef0a48b6b15d5e01fde06ebd87cbfc96c862320b428e030877cf308a5f1a82
MD5 7bb18e7684f28cd18be298a9b4cacc9a
BLAKE2b-256 3e1bb35fd67d7129d9c0e8be64e2fd5b2a1de197dc84a3e97c78581804a142bd

See more details on using hashes here.

Provenance

File details

Details for the file pyhdf-0.11.1-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyhdf-0.11.1-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 433675a7ed169338dc4253e150caa08051882f79e8af3a7f961e835603d5df03
MD5 2064d176bbfefc7f98e0f6234e177f9e
BLAKE2b-256 a356258f91046f5275def96125ea2d37a97f5e7ab14ad2bea95730da49502bc5

See more details on using hashes here.

Provenance

File details

Details for the file pyhdf-0.11.1-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: pyhdf-0.11.1-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 186.7 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.4

File hashes

Hashes for pyhdf-0.11.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 f1aa216fcabb1eb1e1f6fdbd4e1de9c66a212b9f0c8b73b8bbf7a40c3049e1d1
MD5 e7ccd06681d4cdcb8168e10e70550606
BLAKE2b-256 d28479017d5a8053a5c12debe245851c40d07d7d62cbc68405fd065ffb27765a

See more details on using hashes here.

Provenance

File details

Details for the file pyhdf-0.11.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyhdf-0.11.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6510720df9a4b181f98f48b45b7b07063293dbd2aacb882d94816121d2e34678
MD5 d8be7bfe4576aef24548652f4fc810bd
BLAKE2b-256 0e68a2499c3e6ad27f03ae6633bf881610c5b09e92035fc0a6ba88bf31ea3902

See more details on using hashes here.

Provenance

File details

Details for the file pyhdf-0.11.1-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyhdf-0.11.1-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 5c5db3b2191c73b8f92c36d0eaaa5b28c4a01153f6471e7e8a1fc12dc9ed2b4c
MD5 77bf7d03c1089d735c2c29a666ccc258
BLAKE2b-256 9b8f1a0bc95c6268f5b0d2845a21df0dcc18b9d20ecd0962c4230194598e777f

See more details on using hashes here.

Provenance

File details

Details for the file pyhdf-0.11.1-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: pyhdf-0.11.1-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 186.7 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.4

File hashes

Hashes for pyhdf-0.11.1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 41478a352dfeb3caddd044518eb1368408c3933abb81dbcfcbb420e67d06bf62
MD5 84c3a668488ff5ed1ed7480d62500ab4
BLAKE2b-256 11fb54c3cad61da43d5f8c01b78596fb111a2e539c9f3e1e14f89722ef4572d5

See more details on using hashes here.

Provenance

File details

Details for the file pyhdf-0.11.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyhdf-0.11.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2a239159316366f682e7e7aabf3f300802c8f6b40c56d0451c322c7c65f193dd
MD5 faab76048704d07deb3ace686b3558cc
BLAKE2b-256 2f3d09e7b9b4ec559c79e969cfea336ca9e189519e2f3fada376198ab0ad59cb

See more details on using hashes here.

Provenance

File details

Details for the file pyhdf-0.11.1-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyhdf-0.11.1-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c8f9cd3456bc0ed41d1a6e7843e9bd0ecc1fc3f1c34d1e8496c8b4f9427c4a85
MD5 8f8d7498aeebb3fa124065c09bfccbea
BLAKE2b-256 9dae80136f8fb9033c140b79f16e3e4455a61f46230145886dbc14de71be886b

See more details on using hashes here.

Provenance

File details

Details for the file pyhdf-0.11.1-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: pyhdf-0.11.1-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 185.8 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.4

File hashes

Hashes for pyhdf-0.11.1-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 6afb3271ce9e74746d4eaab7c296dd5da5e0ed1c0560403c58eaf0461718cb2c
MD5 c86ef150046f62228198247c2d820393
BLAKE2b-256 426035703e946b00714f586d2dd4dfda1488578722c1562709816b5717ddc38c

See more details on using hashes here.

Provenance

File details

Details for the file pyhdf-0.11.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyhdf-0.11.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6f50eea8949fec46217ed15abe604081748f7bb1bdbc3405da1d696b0c82e024
MD5 e62732edf99236d31fe5c921026c44e7
BLAKE2b-256 06beb3e0cf137c09706b6e234003e436a842a9ec3fcfb791a97a67a651169341

See more details on using hashes here.

Provenance

File details

Details for the file pyhdf-0.11.1-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyhdf-0.11.1-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 b84c54beef8fab5aa160c01c46274166a4c47c59628f36a0035f7e266fd4fc96
MD5 d52eeeae8b569b5d21b35dddc1baa563
BLAKE2b-256 867ab985938751f66c5fc29827e9cfb77fe2636b73dd320c550f55092c977465

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page