Skip to main content

Python interface to the NCSA HDF4 library

Project description

Tests Pypi build Anaconda-Server Badge

pyhdf

pyhdf is a python wrapper around the NCSA HDF version 4 library. The SD (Scientific Dataset), VS (Vdata) and V (Vgroup) API's are currently implemented. NetCDF files can also be read and modified. It supports both Python 2 and Python 3.

Note: The sourceforge pyhdf website and project are out-of-date. The original author of pyhdf have abandoned the project and it is currently maintained in github.

Version 0.9.x was called python-hdf4 in PyPI because at that time we didn't have access to the pyhdf package in PyPI. For version 0.10.0 and onward, please install pyhdf instead of python-hdf4.

Installation

See pyhdf installation instructions or doc/install.rst.

Documentation

See pyhdf documentation.

Additional documentation on the HDF4 format can be found in the HDF4 Support Page.

Examples

Example python programs using the pyhdf package can be found inside the examples/ subdirectory.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyhdf-0.11.4.tar.gz (147.0 kB view details)

Uploaded Source

Built Distributions

pyhdf-0.11.4-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (534.0 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pyhdf-0.11.4-pp39-pypy39_pp73-macosx_10_9_x86_64.whl (696.3 kB view details)

Uploaded PyPy macOS 10.9+ x86-64

pyhdf-0.11.4-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (533.7 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pyhdf-0.11.4-pp38-pypy38_pp73-macosx_10_9_x86_64.whl (696.4 kB view details)

Uploaded PyPy macOS 10.9+ x86-64

pyhdf-0.11.4-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (539.1 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pyhdf-0.11.4-pp37-pypy37_pp73-macosx_10_9_x86_64.whl (696.2 kB view details)

Uploaded PyPy macOS 10.9+ x86-64

pyhdf-0.11.4-cp311-cp311-win_amd64.whl (187.0 kB view details)

Uploaded CPython 3.11 Windows x86-64

pyhdf-0.11.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (781.0 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

pyhdf-0.11.4-cp311-cp311-macosx_10_9_x86_64.whl (703.7 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

pyhdf-0.11.4-cp310-cp310-win_amd64.whl (187.0 kB view details)

Uploaded CPython 3.10 Windows x86-64

pyhdf-0.11.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (771.6 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

pyhdf-0.11.4-cp310-cp310-macosx_10_9_x86_64.whl (703.7 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

pyhdf-0.11.4-cp39-cp39-win_amd64.whl (186.9 kB view details)

Uploaded CPython 3.9 Windows x86-64

pyhdf-0.11.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (771.5 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

pyhdf-0.11.4-cp39-cp39-macosx_10_9_x86_64.whl (703.7 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

pyhdf-0.11.4-cp38-cp38-win_amd64.whl (186.9 kB view details)

Uploaded CPython 3.8 Windows x86-64

pyhdf-0.11.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (764.8 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

pyhdf-0.11.4-cp38-cp38-macosx_10_9_x86_64.whl (703.9 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

pyhdf-0.11.4-cp37-cp37m-win_amd64.whl (186.1 kB view details)

Uploaded CPython 3.7m Windows x86-64

pyhdf-0.11.4-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (762.4 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

pyhdf-0.11.4-cp37-cp37m-macosx_10_9_x86_64.whl (703.6 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file pyhdf-0.11.4.tar.gz.

File metadata

  • Download URL: pyhdf-0.11.4.tar.gz
  • Upload date:
  • Size: 147.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.2

File hashes

Hashes for pyhdf-0.11.4.tar.gz
Algorithm Hash digest
SHA256 f4d48ee6f297be76e07b1a31710ef898caa31757dfdf173e5a4b94988ea76164
MD5 e58522a0146d097909812752e561916f
BLAKE2b-256 78c3f81003ed480eb619647100d4a4ed9ff3c13153abbd8955dfe530a137ea5c

See more details on using hashes here.

Provenance

File details

Details for the file pyhdf-0.11.4-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyhdf-0.11.4-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6ac796f0f5d8931b85bc1c4973f9023a82986480f363d2999838a3926bd580db
MD5 7b630bfcc5c242747ed11620e7c4f131
BLAKE2b-256 1f239bba2cb8d5f92d6e5a973dad1a1607ff83f4ad34eae72ddfec602f6ef75c

See more details on using hashes here.

Provenance

File details

Details for the file pyhdf-0.11.4-pp39-pypy39_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyhdf-0.11.4-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 3bbbc9a7f94c4651dba71078bd5906a7108d742da533601444bedc14b4b97f4b
MD5 e924f999796a5b2457dcb995cb6247ab
BLAKE2b-256 a61ae7807c6abec805ae36375c5b27a6ea96b5c37d838994d614119358602608

See more details on using hashes here.

Provenance

File details

Details for the file pyhdf-0.11.4-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyhdf-0.11.4-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7d5c3de5e12f580edb27a47ac9773daa1494bb8d01b4f5556abde0bb0561d641
MD5 427a7e74481992361fc0cf7fd9785edd
BLAKE2b-256 10193409cca3b81287e7be5b79db639b41b9ced14f4501d7c9abf2f6bb18b4be

See more details on using hashes here.

Provenance

File details

Details for the file pyhdf-0.11.4-pp38-pypy38_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyhdf-0.11.4-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 68aa15cb935c6d2e9542e7f982fc1fe39b5456cadc55c0d1c45c3d8c4dca75db
MD5 d50b54c6855e3cb6d1ce2f1d415a8914
BLAKE2b-256 d6e47d736a80a5b2fe82a999f2df5a041846fe47fd8743204ae3c40d64c1597f

See more details on using hashes here.

Provenance

File details

Details for the file pyhdf-0.11.4-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyhdf-0.11.4-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0a93568388f81fc3a39cacab0cf44af4eb11031610efcd02f8d6866e61a18e61
MD5 8bfc5d408dbfa67cf634c3cec41c7fb1
BLAKE2b-256 b16edf464afa3d753168f1f83c5aded6e7a93f31a08d9377f5b82ba6c07867c8

See more details on using hashes here.

Provenance

File details

Details for the file pyhdf-0.11.4-pp37-pypy37_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyhdf-0.11.4-pp37-pypy37_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 0bebc79290f397dc607915982f2a58f11c24b5a06f27cfcfa2b0d1ad87ffb681
MD5 68768aa7e621ec35c48a2016aec8be4e
BLAKE2b-256 2669c54f3ad5e28fecbb12eda7cb7ab61666faab9b8d6bfca9ea689c8cc5dd7d

See more details on using hashes here.

Provenance

File details

Details for the file pyhdf-0.11.4-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: pyhdf-0.11.4-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 187.0 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.2

File hashes

Hashes for pyhdf-0.11.4-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 ad1ae9f652f3cb568cda7f6734e6462e2b5081634bd11616cf336e582b8f56c5
MD5 5b461148c5e5cf693645840aac90a8ae
BLAKE2b-256 ae1ebc7f2cec8daed06c36c2d2f6b56a31a416daca977635b2adeacdf8d178a8

See more details on using hashes here.

Provenance

File details

Details for the file pyhdf-0.11.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyhdf-0.11.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 35e799982029307153d35b9d63e3f9a112085eb355e9e58c356ab80aa50dc519
MD5 410699adc51104fd4919987475cdd79e
BLAKE2b-256 4553ec04df3d9f9eeb08905d240b5f080f931e62498f718bf7177c29c994a7ee

See more details on using hashes here.

Provenance

File details

Details for the file pyhdf-0.11.4-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyhdf-0.11.4-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 300f4f82ec4f36279d5b1ec2c75b6b6f7512835e4029619a335a6bc60e0ea465
MD5 57eab0b9a3a4fc9e4fcc313b27ed2217
BLAKE2b-256 da21f2d161f2d4699842e02b32af1167b5959273398da7dd18e80279b38771bd

See more details on using hashes here.

Provenance

File details

Details for the file pyhdf-0.11.4-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: pyhdf-0.11.4-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 187.0 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.2

File hashes

Hashes for pyhdf-0.11.4-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 8632e486d4515f2552d223df99e3fa00ca8072cf9e1273a7b28d23577cebff41
MD5 a5be043578f9934de157e5731d392f34
BLAKE2b-256 d4edc304197bd6f5774fca96ce0447cdb4432d720f0b6608ddcc712143c1b3ec

See more details on using hashes here.

Provenance

File details

Details for the file pyhdf-0.11.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyhdf-0.11.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8297077efa885da9977bde740a796103769c0f0291b756296d2899d278a758ca
MD5 77b06934a75ed81359b479a765626738
BLAKE2b-256 49ba775077b350a59578f5a2b47f61d6de9a0a28066a5f6b3abc6f01f06da680

See more details on using hashes here.

Provenance

File details

Details for the file pyhdf-0.11.4-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyhdf-0.11.4-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 a78cae455bc1b89def4c9066377e7e609d5bb19d0f398a240567a04988192491
MD5 22f1c914fcbe6123bc962f2ae9af8404
BLAKE2b-256 63986cad2a2afc8a8c3b0d23013eeee490a94dc1383935ee69931dec1338a452

See more details on using hashes here.

Provenance

File details

Details for the file pyhdf-0.11.4-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: pyhdf-0.11.4-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 186.9 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.2

File hashes

Hashes for pyhdf-0.11.4-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 9ac556e04077c2d83dacd85829c9bb6a9f62ffecc33cdad7c1948f80597a3354
MD5 adb61a10cef89a624f1f4ff72b09adc2
BLAKE2b-256 8835f88cad2c4fa6c2edd92e91290750fac28daf5f3998f03962de7603b8505d

See more details on using hashes here.

Provenance

File details

Details for the file pyhdf-0.11.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyhdf-0.11.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 896ddb98c4947115600a0ec7f92146a0a834adec8b59443c8f614bb8993a992d
MD5 a595bf2c29924a9c647520a03bf1045f
BLAKE2b-256 336abbfb5b6a143b130e56e46ec95bcba94dce3c628e389051ff704d29bac6a6

See more details on using hashes here.

Provenance

File details

Details for the file pyhdf-0.11.4-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyhdf-0.11.4-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 3b86817a6eb776d7076b23f1ba323c2c6304ef68bda9a04dd997e7d9206cedb9
MD5 c8c6373196aa4166da57eac8d5f401b5
BLAKE2b-256 69ecee8b0f06fdf526e1e84bb909298c437fa9fa07ebd9c0ee6e3c2cf1f1a09e

See more details on using hashes here.

Provenance

File details

Details for the file pyhdf-0.11.4-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: pyhdf-0.11.4-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 186.9 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.2

File hashes

Hashes for pyhdf-0.11.4-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 c32c67b2aaaa2ab268031617b63667afeb7e3af47970dc21f8002a6371ad65e6
MD5 f355b81718967b8af94fd139396ab444
BLAKE2b-256 89a346e78393616c8ab180a127227e6c864668760e2094cf84927d7f03ae91e3

See more details on using hashes here.

Provenance

File details

Details for the file pyhdf-0.11.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyhdf-0.11.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2777fbd9995de523f8ae2ea7aa1104a749c3ceca2aebef55d957e42ae8550a2b
MD5 e6174befa395a55bfbeb77eae155dfaa
BLAKE2b-256 4a0833a4a0e3bd270d705ffd2c1e1423f4b2e87d297e63ccd10e26984896359a

See more details on using hashes here.

Provenance

File details

Details for the file pyhdf-0.11.4-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyhdf-0.11.4-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 da77fda4ef6f5f4add1e3c7830754743aec837a7e56e62b3fab413e4cec735de
MD5 019f1b756267dc30eb3a7ed21c15293e
BLAKE2b-256 f6ff207b03701bfe1c46da5fff206a82b649a82e7110f9a499ea83a57707b3fc

See more details on using hashes here.

Provenance

File details

Details for the file pyhdf-0.11.4-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: pyhdf-0.11.4-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 186.1 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.2

File hashes

Hashes for pyhdf-0.11.4-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 fd9612732d336fc04e5cd03fab010426b9b6defed92527fc87c82439219970b0
MD5 867f1ea358d23dac9a4c82188e75ef7e
BLAKE2b-256 c305254bb22ef7bca18dd5cc9cf9d4e9da4efafa35d848e0b263e247f6966bb1

See more details on using hashes here.

Provenance

File details

Details for the file pyhdf-0.11.4-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyhdf-0.11.4-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 fa31240ca2892a85885660413a6a513220985666fe3e59d5ddb789d521c3d534
MD5 7924fc201962a4f641b0bb6632eb127b
BLAKE2b-256 357be062cc9d72b58c33c39d3fc726297375d46f95502fb5e9cf9b9194e9ade0

See more details on using hashes here.

Provenance

File details

Details for the file pyhdf-0.11.4-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyhdf-0.11.4-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 5c0481bbcdd863d49e88cc0043e8f1ac7277c535f6b9ba8fc65ed8fce176fe71
MD5 2f566ff2b736c36f3fc56690bd3fe523
BLAKE2b-256 e12de163452e663dd4a4fc33f6cb9428508282f4b7afd097c37fdf57a6ee5178

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page