Skip to main content

Pythonic interface to the HepMC3 C++ library.

Project description

pyhepmc

A Pythonic wrapper for the HepMC3 C++ library.

pyhepmc was formerly known as pyhepmc-ng. The development of pyhepmc-ng continues in the pyhepmc package.

PyPI version

HepMC3 has its own Python bindings. Why should you use these one?

pyhepmc is easy to install

The command pip install pyhepmc should work on all Python versions >= 3.6 and all common architectures.

Under the hood, the bindings are build with the excellent pybind11 library. External installations of pybind11 or HepMC3 are not required, pyhepmc includes the lightweight source code of both libraries with the submodule feature of git.

pyhepmc is actively developed

pyhepmc is part of the Scikit-HEP project, which aims to provide all tools needed by particle physicists to do data analysis in Python. It also gets official support from the HepMC3 project.

pyhepmc is unit tested

Everything in pyhepmc is unit tested.

pyhepmc is Pythonic

pyhepmc is a hand-crafted mapping of C++ code to Python. It supports Python idioms where appropriate.

  • C++ methods which act like properties are represented as properties, e.g. GenParticle::set_status and GenParticle::status are mapped to a single GenParticle.status field in Python
  • Tuples and lists are implicitly convertible to FourVectors
  • Vectors of objects on the C++ side are mapped to Python lists
  • ReaderAscii and WriterAscii support the context manager protocol
  • A convenient open function is provided for reading and writing HepMC files

Documentation

pyhepmc currently has no separate documentation, but it mirrors the C++ interface of the HepMC3 library, which is documented here: http://hepmc.web.cern.ch/hepmc.

For developers

Repository management

If you want to contribute to the source code, please follow these instructions. Start by forking the scikit-hep repository, then clone your fork to your local compute with these commands (replace YourName with your Github username):

git clone --recursive git@github.com:YourName/pyhepmc.git

Now cd to the project folder (the rest assumes you are in the project folder). The command clones the pyhepmc repository and its nested sub-repositories. If you already cloned the fork without the --recursive option, you need to manually initialize the nested sub-repositories:

git submodule update --init

Add a remote endpoint called upstream to keep in sync with the master of the scikit-hep repository:

git remote add upstream https://github.com/scikit-hep/pyhepmc.git

This concludes the initial set up.

To develop a feature or a fix, create a branch from your master (make sure your master is in sync with the scikit-hep master):

git checkout -b my_cool_feature master

Commit to your branch and initiate a pull request from the Github web page when you feel the feature is ready to be reviewed. Note: Never commit to the master, only to feature branches.

The scikit-hep master may have moved forward in the meantime. Keep your local master branch in sync with these commands:

git checkout master
git pull upstream master
git submodule update # update the nested sub-repositories if necessary

If you have followed the rule to never commit to the master, then these commands always work. Rebase your feature branch onto the updated master:

git checkout my_cool_feature
git rebase master

If conflicts between your changes and those in the master appear, you need to resolve them. Follow the instructions printed by git.

Build the package

pyhepmc depends on other Python packages. We recommend to use a virtual environment for development which is isolated from your system-wide Python installation. Install a virtual environment in the project folder:

pip install --user virtualenv # only needed if you don't have virtualenv already
virtualenv py37 -p python3.7 # or use another Python version

Activate the virtualenv and install the required packages for development:

. py37/bin/activate
pip install -r requirements.txt

Now build the package in develop mode.

python setup.py develop

This should work since pyhepmc is continously tested on recent versions of gcc, clang and msvc. If it does not, please submit an issue with the build log and your compiler version. You can now change the source code. Run the previous command again to build the project after you made changes. Finally, run the unit tests:

pytest tests

These should all pass. If you add new features, don't forget to add unit tests for them.

To leave the virtualenv, call deactivate or close the shell.

Install your local version

If you want to use your local version for productive work, pip-install it from within the local project folder:

pip install --user --upgrade .

The --user option is not necessary when you are inside a virtualenv or if you have write-permission to the system-wise Python directories. The --upgrade option makes sure that an already existing pyhepmc version is replaced.

License

pyhepmc is covered by the BSD 3-clause license, see the LICENSE file for details. This license only applies to the pyhepmc code. The connected external libraries HepMC3 and pybind11 are covered by other licenses, as described in their respective LICENSE files.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyhepmc-2.0.0.tar.gz (290.6 kB view details)

Uploaded Source

Built Distributions

pyhepmc-2.0.0-cp310-cp310-win_amd64.whl (333.0 kB view details)

Uploaded CPython 3.10 Windows x86-64

pyhepmc-2.0.0-cp310-cp310-win32.whl (278.7 kB view details)

Uploaded CPython 3.10 Windows x86

pyhepmc-2.0.0-cp310-cp310-musllinux_1_1_x86_64.whl (925.9 kB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

pyhepmc-2.0.0-cp310-cp310-musllinux_1_1_i686.whl (1.0 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ i686

pyhepmc-2.0.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (427.9 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

pyhepmc-2.0.0-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl (451.4 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686

pyhepmc-2.0.0-cp310-cp310-macosx_10_9_x86_64.whl (371.6 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

pyhepmc-2.0.0-cp310-cp310-macosx_10_9_universal2.whl (706.3 kB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64)

pyhepmc-2.0.0-cp39-cp39-win_amd64.whl (333.0 kB view details)

Uploaded CPython 3.9 Windows x86-64

pyhepmc-2.0.0-cp39-cp39-win32.whl (278.8 kB view details)

Uploaded CPython 3.9 Windows x86

pyhepmc-2.0.0-cp39-cp39-musllinux_1_1_x86_64.whl (926.2 kB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

pyhepmc-2.0.0-cp39-cp39-musllinux_1_1_i686.whl (1.0 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ i686

pyhepmc-2.0.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (386.3 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

pyhepmc-2.0.0-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl (404.3 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ i686

pyhepmc-2.0.0-cp39-cp39-macosx_10_9_x86_64.whl (371.7 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

pyhepmc-2.0.0-cp39-cp39-macosx_10_9_universal2.whl (706.5 kB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

pyhepmc-2.0.0-cp38-cp38-win_amd64.whl (333.3 kB view details)

Uploaded CPython 3.8 Windows x86-64

pyhepmc-2.0.0-cp38-cp38-win32.whl (278.8 kB view details)

Uploaded CPython 3.8 Windows x86

pyhepmc-2.0.0-cp38-cp38-musllinux_1_1_x86_64.whl (925.9 kB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

pyhepmc-2.0.0-cp38-cp38-musllinux_1_1_i686.whl (1.0 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ i686

pyhepmc-2.0.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (385.9 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

pyhepmc-2.0.0-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl (403.9 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ i686

pyhepmc-2.0.0-cp38-cp38-macosx_10_9_x86_64.whl (371.7 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

pyhepmc-2.0.0-cp38-cp38-macosx_10_9_universal2.whl (706.4 kB view details)

Uploaded CPython 3.8 macOS 10.9+ universal2 (ARM64, x86-64)

pyhepmc-2.0.0-cp37-cp37m-win_amd64.whl (331.2 kB view details)

Uploaded CPython 3.7m Windows x86-64

pyhepmc-2.0.0-cp37-cp37m-win32.whl (281.0 kB view details)

Uploaded CPython 3.7m Windows x86

pyhepmc-2.0.0-cp37-cp37m-musllinux_1_1_x86_64.whl (938.6 kB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ x86-64

pyhepmc-2.0.0-cp37-cp37m-musllinux_1_1_i686.whl (1.0 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ i686

pyhepmc-2.0.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (388.6 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

pyhepmc-2.0.0-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl (408.8 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ i686

pyhepmc-2.0.0-cp37-cp37m-macosx_10_9_x86_64.whl (366.5 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

pyhepmc-2.0.0-cp36-cp36m-win_amd64.whl (331.2 kB view details)

Uploaded CPython 3.6m Windows x86-64

pyhepmc-2.0.0-cp36-cp36m-win32.whl (281.0 kB view details)

Uploaded CPython 3.6m Windows x86

pyhepmc-2.0.0-cp36-cp36m-musllinux_1_1_x86_64.whl (938.5 kB view details)

Uploaded CPython 3.6m musllinux: musl 1.1+ x86-64

pyhepmc-2.0.0-cp36-cp36m-musllinux_1_1_i686.whl (1.0 MB view details)

Uploaded CPython 3.6m musllinux: musl 1.1+ i686

pyhepmc-2.0.0-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (388.6 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64

pyhepmc-2.0.0-cp36-cp36m-manylinux_2_12_i686.manylinux2010_i686.whl (408.6 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ i686

pyhepmc-2.0.0-cp36-cp36m-macosx_10_9_x86_64.whl (366.6 kB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file pyhepmc-2.0.0.tar.gz.

File metadata

  • Download URL: pyhepmc-2.0.0.tar.gz
  • Upload date:
  • Size: 290.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.8.13

File hashes

Hashes for pyhepmc-2.0.0.tar.gz
Algorithm Hash digest
SHA256 723faafacc9fc1ec9614f1fe4214efeab8e32b452bbff981aa9eaefd59b6834e
MD5 9ab8a7ef1f8c7f5453c107b7ec99ede8
BLAKE2b-256 ab9bcd7e8bdea35032a0309f6b2a5568605093794a0f95982b665148966bb495

See more details on using hashes here.

File details

Details for the file pyhepmc-2.0.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: pyhepmc-2.0.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 333.0 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.8.13

File hashes

Hashes for pyhepmc-2.0.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 46b1b1bd111f5a3d9fff0aa8e3b083cbd7d7e289bffc7f3eb7cdc40feafe24c0
MD5 1796d72e3a038ee0c9440ba1afbcb8ff
BLAKE2b-256 51e91f8d4cd3c0a3a2d56b201d75284b1229b9284f27b3f8f1f63fa00f8d7b95

See more details on using hashes here.

File details

Details for the file pyhepmc-2.0.0-cp310-cp310-win32.whl.

File metadata

  • Download URL: pyhepmc-2.0.0-cp310-cp310-win32.whl
  • Upload date:
  • Size: 278.7 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.8.13

File hashes

Hashes for pyhepmc-2.0.0-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 d34291b0b8659c33a58e04ce71acf48491f7d18997c479fdd64dabcaab499820
MD5 77993d5adc036892b72905baf9aee17d
BLAKE2b-256 26ee37cf8bc170c3e12382ecc94c49c2485666d7562e47d20e3aa619aaba56b2

See more details on using hashes here.

File details

Details for the file pyhepmc-2.0.0-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pyhepmc-2.0.0-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 665270b71ba78e05cac02c1eb31f5747464ba0023eacd334c2fe0b1c43607a95
MD5 1f37ba6f76dea185e69a2d1765a92d09
BLAKE2b-256 6dedc29ebc015715aa11b390e2bec55ea8007fc75038961edb913d1c2a4f5fa7

See more details on using hashes here.

File details

Details for the file pyhepmc-2.0.0-cp310-cp310-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for pyhepmc-2.0.0-cp310-cp310-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 c37e3d0bf162deddb416c0e8225d1a77217899b8868b3ceaa5c184a38a56430d
MD5 5858b43591e2797f7533e13b12809987
BLAKE2b-256 cd3084d37cb34d2cc37240aa6c4a8510c1829c3a587f65bb4be140e6530aa37a

See more details on using hashes here.

File details

Details for the file pyhepmc-2.0.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyhepmc-2.0.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 bcc5882383ff63a94621600896b40130c6b0c659e9bbe0d6ffb873d85ee4663e
MD5 75350a28081b5783a200997ad8ebeac7
BLAKE2b-256 165ed7475f906c81021cf02ca198ffd7a9008ab1afca82cb4bc24cd0c88f3481

See more details on using hashes here.

File details

Details for the file pyhepmc-2.0.0-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyhepmc-2.0.0-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 d1e4cb855cc9e2a5b258e86e7cacd2f7e7e762d008bc7d7ccf77e21a88dc2b52
MD5 9aa12627d3ef251fa22fbe74023d7a5a
BLAKE2b-256 baab37af3688f8bb67e4828b4900206bb2efec0fae744f3bed01afcda3c3946f

See more details on using hashes here.

File details

Details for the file pyhepmc-2.0.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyhepmc-2.0.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c2c2b58193e81f524108fe820f4b0679f8bb9afab358a0ce8d2deb6895042b04
MD5 c13a984b1035a8b53e4881d989662436
BLAKE2b-256 1008ca1efc8090dc31fcf537144db162f2a03a287aebf293d5e525f95171461a

See more details on using hashes here.

File details

Details for the file pyhepmc-2.0.0-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for pyhepmc-2.0.0-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 dc5d579c8cf0574d2046106e6ec0440e4d72b97ec79e0527ca6e52bf5a0ce9ad
MD5 be8fa7e81012452e62bc4e183e6926f9
BLAKE2b-256 3177892b097bcbaa747d253bd981b164202947cc0cd7a33e66855743bc6809d7

See more details on using hashes here.

File details

Details for the file pyhepmc-2.0.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: pyhepmc-2.0.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 333.0 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.8.13

File hashes

Hashes for pyhepmc-2.0.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 6270f365c7ca4a886e482b3280a77102ff2c2f611966da6acc233f97358fe161
MD5 07d016497f0cbc3601a6b8f4ef95be75
BLAKE2b-256 a09f7acece3ef7372653d4fda4a6e3c88c3759642ee0cf09fa619fc08272572f

See more details on using hashes here.

File details

Details for the file pyhepmc-2.0.0-cp39-cp39-win32.whl.

File metadata

  • Download URL: pyhepmc-2.0.0-cp39-cp39-win32.whl
  • Upload date:
  • Size: 278.8 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.8.13

File hashes

Hashes for pyhepmc-2.0.0-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 b3577d6eac2ca4406c545788622117b0090bb77a4ec4df317816d0c9686191f6
MD5 09624986f3550ebac257bb0e306cadbf
BLAKE2b-256 bf629c4509b3f757b9b005aac0bbb513acb7143b165ad73e79463b9eef518494

See more details on using hashes here.

File details

Details for the file pyhepmc-2.0.0-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pyhepmc-2.0.0-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 9f97f27f8e92af5303117cc3010afa5e80141992c4d06e4df668bb13a6239eed
MD5 3f2bc497ce56b7839c7f4770fba52792
BLAKE2b-256 96ad36064c4f365a12d2eca70e806d11ae947136bf1e07ca14fb614bdd801c52

See more details on using hashes here.

File details

Details for the file pyhepmc-2.0.0-cp39-cp39-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for pyhepmc-2.0.0-cp39-cp39-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 46b87ca9cd596116945b56033096e90fd5d8cd7d4137971f92e7da000b445366
MD5 448a76b321ad348817e7c4561e81030a
BLAKE2b-256 338f60cf32e8b75970b87d236447c0b13d4051e820ba5367ba036ea999fdc9f6

See more details on using hashes here.

File details

Details for the file pyhepmc-2.0.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for pyhepmc-2.0.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 5c98c159e8b032d46fd7f99bf14c0a322d308a85ea7152c3a1668ec1f2647c90
MD5 1a4b952f9540b14f6ced7e2d3cf9a39f
BLAKE2b-256 5b49eca74db91661ab67b1c5e04fd59af6463c71b02cf6589629c8ff4e9b2428

See more details on using hashes here.

File details

Details for the file pyhepmc-2.0.0-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for pyhepmc-2.0.0-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 75a2fa6fcb435bde588569e50e88eece46f74cccb893df3f2e6d9168c92506e8
MD5 95bd531f3c8451c324494b882a623dc0
BLAKE2b-256 5c789393968baf3d3472987f7477dc2d14ea3bc0ed0a8a6973209e1d38da897c

See more details on using hashes here.

File details

Details for the file pyhepmc-2.0.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyhepmc-2.0.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 0403216686de271827985b34f1a5059ae8022a7ba416ccca0d3687ab2e8ddd06
MD5 5f8548d5254deecef0f34ec4a6644fc8
BLAKE2b-256 0e643a8f2e783b7871cab3acf3ee5910d13dfdfddb3b984e8e27328352dd87b6

See more details on using hashes here.

File details

Details for the file pyhepmc-2.0.0-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for pyhepmc-2.0.0-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 83fb3660db91fbaee9060298a1b6262eaf9a73d18194ad8c1a8581afcb25ddb0
MD5 32738b902152b867ad105d436a6c3086
BLAKE2b-256 21b31f2625736ef80621f8dd24fbe2a2a1c7fe349deb7e6f2331ac1077b46e59

See more details on using hashes here.

File details

Details for the file pyhepmc-2.0.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: pyhepmc-2.0.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 333.3 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.8.13

File hashes

Hashes for pyhepmc-2.0.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 de098e3dae9acdcb2dbd1912d3b6d5166f4c2e46aebdd043725922edbd5a5731
MD5 be9c89c43a8e174b0e05ab114e6c0d1b
BLAKE2b-256 baacc05a607001a0cc8f6b78abd588deea8185cac9b5d8985997ffb8a1051443

See more details on using hashes here.

File details

Details for the file pyhepmc-2.0.0-cp38-cp38-win32.whl.

File metadata

  • Download URL: pyhepmc-2.0.0-cp38-cp38-win32.whl
  • Upload date:
  • Size: 278.8 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.8.13

File hashes

Hashes for pyhepmc-2.0.0-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 31299bd83fb7a38931b4b0ca5ec3697949155b414a8d7a76d5ac9ccb84cd80e2
MD5 c8975149dc9a91a52a5e59572e508ea4
BLAKE2b-256 433b5ba8bf58e767d720b8fbbfffceccdca69b2edbd06f1aaaf5073d0bec5a21

See more details on using hashes here.

File details

Details for the file pyhepmc-2.0.0-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pyhepmc-2.0.0-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 e2d3f6d0e5a8fa405fde3eff3de4e5d0eb133728495280c736903bc9537cc375
MD5 e39435b877bdf2fea2734c20904138f0
BLAKE2b-256 aab99856a1e512259262c4d23cbd764de845015e93d46638cc14ab2fd4648896

See more details on using hashes here.

File details

Details for the file pyhepmc-2.0.0-cp38-cp38-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for pyhepmc-2.0.0-cp38-cp38-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 138cfa6baea4f3d917d493a19335b82aca1fe16e10a57798d1ed42d8173ca11f
MD5 e0a4d5e59f85581b937f7661f1db55f9
BLAKE2b-256 dc8407a980656191a66c17083a4418f0b1b8ee200fe7837948fc9f65eb834d59

See more details on using hashes here.

File details

Details for the file pyhepmc-2.0.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for pyhepmc-2.0.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 d557a37b06800e2e5fa62aa9a4a55c48cda3df6f8a7c1d4439115adb8bbe76da
MD5 be70c893a4a98b98ff4d1a489f3b1ff8
BLAKE2b-256 b8bb5e3c2eafe869cc0427eacfa9f5d6c01d4ef769fb8fea15ad700c851c3798

See more details on using hashes here.

File details

Details for the file pyhepmc-2.0.0-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for pyhepmc-2.0.0-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 980272fdae18579141feb8eb23307957cddb33d40154e805bd2cb432e71e063a
MD5 c99d5e7b419073371aaca974eaecfe45
BLAKE2b-256 fb36e010515b33cad78eba8f015a9b6fea38fdc14089ce6f5e7a314a0a89a325

See more details on using hashes here.

File details

Details for the file pyhepmc-2.0.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyhepmc-2.0.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 420e1fb31066fdccfdd00016e48d2edf248c1c6f692246e3527f3b2f2e5782e8
MD5 8e6002c98694f976868454aa58543d94
BLAKE2b-256 34f6bb9b179af4f9e61f8a55443d680e1c489e7d2fa55350581a11788354476d

See more details on using hashes here.

File details

Details for the file pyhepmc-2.0.0-cp38-cp38-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for pyhepmc-2.0.0-cp38-cp38-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 4428e825d13aec586e7913707af4cd452126a5ea245c3188aa6783ea3989afd4
MD5 7a4d48a910763fa7bb80cf1a6c7ea026
BLAKE2b-256 6cb4ed8df78a5e1f872e4cddc847e80e1ab58950170ce1a8c91f130cef6e4b7a

See more details on using hashes here.

File details

Details for the file pyhepmc-2.0.0-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: pyhepmc-2.0.0-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 331.2 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.8.13

File hashes

Hashes for pyhepmc-2.0.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 4976b1c1d30111c2601263c1d955636cfd8ea6a6dca51570518472e5b261904d
MD5 4b9e57efc768befd0889ee656f2dde5b
BLAKE2b-256 0629215f30cd6b63de78644d6bb76b8e7c289a6c4eaa7f2683029ace92b145c2

See more details on using hashes here.

File details

Details for the file pyhepmc-2.0.0-cp37-cp37m-win32.whl.

File metadata

  • Download URL: pyhepmc-2.0.0-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 281.0 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.8.13

File hashes

Hashes for pyhepmc-2.0.0-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 b4ac6ccc87bef6ebb93ef601247e3f5233f6724753f2b077042a9ef479a352b4
MD5 0473ad72ef7d5880a76f5ce3e1c28387
BLAKE2b-256 9a5312c21017def68c3e64e3d8a21bf46fb15aa36549d37d07c86714655df44f

See more details on using hashes here.

File details

Details for the file pyhepmc-2.0.0-cp37-cp37m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pyhepmc-2.0.0-cp37-cp37m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 f5f469b18762868f5fe8f844c074ee28841b3fd2ee520aa970afd36569409645
MD5 16dfd01d20cd0bac3e6dfee973a26cf6
BLAKE2b-256 ffdc6612266e13776c058f86ed69a02fc678149b29b7c75fd7d769f647c4b123

See more details on using hashes here.

File details

Details for the file pyhepmc-2.0.0-cp37-cp37m-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for pyhepmc-2.0.0-cp37-cp37m-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 de030bfd8090c82f3c124aecda6329e417ec5b14816ef1866ddc0df073984ead
MD5 6e84a5b028af54972580ebd0ddf3ecc7
BLAKE2b-256 aa0083e16b580c17c5096c70ede074bdc38651cc4679a3ccf2d3563b74be27d6

See more details on using hashes here.

File details

Details for the file pyhepmc-2.0.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for pyhepmc-2.0.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 4d904ecf97951d2cd71002ab1dbe4fb7ad40593e57410131d19e455e0c17bf74
MD5 cbaaba488f485d360baddd4316f99ea0
BLAKE2b-256 4e6402d9560f6b6d468b8df3573c6626c514c0435c528bbc0e3c3ecb6f73144e

See more details on using hashes here.

File details

Details for the file pyhepmc-2.0.0-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for pyhepmc-2.0.0-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 c409ba51a0c8af28fe09c8cc274238b13939c0d387b1a26b1b784c64a4a6904c
MD5 05bc242958b5ccb2a71e9ab1f320c57b
BLAKE2b-256 bc12b69405c694db50ef3a1b39692d7d5d282c3cb9a4e074dc85aaaacd39771f

See more details on using hashes here.

File details

Details for the file pyhepmc-2.0.0-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyhepmc-2.0.0-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 b688d38a83bad454d8883266319de72e8723530aed4ce22fc7837fa2178d6896
MD5 e1abffb7e50f2c679f8e5131019c4b62
BLAKE2b-256 4e55f49ea62620441041c95de3f1ebdd6617302c37ef6a0ba60b334b67a95f6d

See more details on using hashes here.

File details

Details for the file pyhepmc-2.0.0-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: pyhepmc-2.0.0-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 331.2 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.8.13

File hashes

Hashes for pyhepmc-2.0.0-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 fb48e2d6419ba897872a811226f31337108d9bbd9092b6d71d5808c1f8fd970a
MD5 a14278cbf066ad26c752aa2e27899849
BLAKE2b-256 443dedc5df9c05877f18259641971e8ea2d1e64b70d45964f4d6109722f6299a

See more details on using hashes here.

File details

Details for the file pyhepmc-2.0.0-cp36-cp36m-win32.whl.

File metadata

  • Download URL: pyhepmc-2.0.0-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 281.0 kB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.8.13

File hashes

Hashes for pyhepmc-2.0.0-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 fd3001d3042b03ccf6ed31e8d4e1ae0cca1737bff4c2aadf1258215fb4291a14
MD5 3bc81091ef96ce2e858b442ed38c1799
BLAKE2b-256 bcf225cb007a504704120d112ebda04b5188a17904751731aed3b85274b589c8

See more details on using hashes here.

File details

Details for the file pyhepmc-2.0.0-cp36-cp36m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pyhepmc-2.0.0-cp36-cp36m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 4e8f1fc700d0d7c25b05e83a0a13b7ef803cc335f6ec16295d200f8c12c545b6
MD5 412964f7ad3abe0e9f4d8ff4b90d4bb1
BLAKE2b-256 02e39cd8430a024f4f8e91718155e4469dc23c98167a0f57150fd130a88272f3

See more details on using hashes here.

File details

Details for the file pyhepmc-2.0.0-cp36-cp36m-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for pyhepmc-2.0.0-cp36-cp36m-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 0949fb53c8434f1ed665d082799acfcb1719abb894028de8a3ce898869ffebc3
MD5 aee84fd459d0bccfdbac2a727dfd401f
BLAKE2b-256 c492694792fb151aea7745085cad25cc2921afe967f345bdacd22149c9f5ebf5

See more details on using hashes here.

File details

Details for the file pyhepmc-2.0.0-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for pyhepmc-2.0.0-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 7442ddc08a1b209a50bb12f78ee2ed20b26bcb6a39adb7b97091579f1dcb93d4
MD5 23f82a3510262d376c902c4a394ed639
BLAKE2b-256 c6c91fc0512abc5499c8bd43179c5dae9e8c68b4a99307456db99444322a65f2

See more details on using hashes here.

File details

Details for the file pyhepmc-2.0.0-cp36-cp36m-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for pyhepmc-2.0.0-cp36-cp36m-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 cf9900fc6911bf6817d5567a671c361366fdb0759ac121fe8e7b4f5d907fb68f
MD5 28b122df7c28cf053c686687a47fda9b
BLAKE2b-256 6680fbb2de236964ef57176f8eea85f959b0d7e5015ab1a4330bea397681ba26

See more details on using hashes here.

File details

Details for the file pyhepmc-2.0.0-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyhepmc-2.0.0-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 795a9b2a918a78ebec9da4654a7cfdc13bd344f0cb525d60d8ad2a967b6967ac
MD5 b765576af2658ba72e965d40f66acc5a
BLAKE2b-256 0737692744439f9aa263aaa33fed7379ebb603e5438fbed1c4a2927401bf9bbd

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page