Skip to main content

Pythonic interface to the HepMC3 C++ library.

Project description

pyhepmc

A Pythonic wrapper for the HepMC3 C++ library.

pyhepmc was formerly known as pyhepmc-ng. The development of pyhepmc-ng continues in the pyhepmc package.

PyPI version

HepMC3 has its own Python bindings. Why should you use these one?

pyhepmc is easy to install

The command pip install pyhepmc should work on all Python versions >= 3.6 and all common architectures.

Under the hood, the bindings are build with the excellent pybind11 library. External installations of pybind11 or HepMC3 are not required, pyhepmc includes the lightweight source code of both libraries with the submodule feature of git.

pyhepmc is actively developed

pyhepmc is part of the Scikit-HEP project, which aims to provide all tools needed by particle physicists to do data analysis in Python. It also gets official support from the HepMC3 project.

pyhepmc is unit tested

Everything in pyhepmc is unit tested.

pyhepmc is Pythonic

pyhepmc is a hand-crafted mapping of C++ code to Python. It supports Python idioms where appropriate.

  • C++ methods which act like properties are represented as properties, e.g. GenParticle::set_status and GenParticle::status are mapped to a single GenParticle.status field in Python
  • Tuples and lists are implicitly convertible to FourVectors
  • Vectors of objects on the C++ side are mapped to Python lists
  • ReaderAscii and WriterAscii support the context manager protocol
  • A convenient open function is provided for reading and writing HepMC files

Documentation

pyhepmc currently has no separate documentation, but it mirrors the C++ interface of the HepMC3 library, which is documented here: http://hepmc.web.cern.ch/hepmc.

For developers

Repository management

If you want to contribute to the source code, please follow these instructions. Start by forking the scikit-hep repository, then clone your fork to your local compute with these commands (replace YourName with your Github username):

git clone --recursive git@github.com:YourName/pyhepmc.git

Now cd to the project folder (the rest assumes you are in the project folder). The command clones the pyhepmc repository and its nested sub-repositories. If you already cloned the fork without the --recursive option, you need to manually initialize the nested sub-repositories:

git submodule update --init

Add a remote endpoint called upstream to keep in sync with the master of the scikit-hep repository:

git remote add upstream https://github.com/scikit-hep/pyhepmc.git

This concludes the initial set up.

To develop a feature or a fix, create a branch from your master (make sure your master is in sync with the scikit-hep master):

git checkout -b my_cool_feature master

Commit to your branch and initiate a pull request from the Github web page when you feel the feature is ready to be reviewed. Note: Never commit to the master, only to feature branches.

The scikit-hep master may have moved forward in the meantime. Keep your local master branch in sync with these commands:

git checkout master
git pull upstream master
git submodule update # update the nested sub-repositories if necessary

If you have followed the rule to never commit to the master, then these commands always work. Rebase your feature branch onto the updated master:

git checkout my_cool_feature
git rebase master

If conflicts between your changes and those in the master appear, you need to resolve them. Follow the instructions printed by git.

Build the package

pyhepmc depends on other Python packages. We recommend to use a virtual environment for development which is isolated from your system-wide Python installation. Install a virtual environment in the project folder:

pip install --user virtualenv # only needed if you don't have virtualenv already
virtualenv py37 -p python3.7 # or use another Python version

Activate the virtualenv and install the required packages for development:

. py37/bin/activate
pip install -r requirements.txt

Now build the package in develop mode.

python setup.py develop

This should work since pyhepmc is continously tested on recent versions of gcc, clang and msvc. If it does not, please submit an issue with the build log and your compiler version. You can now change the source code. Run the previous command again to build the project after you made changes. Finally, run the unit tests:

pytest tests

These should all pass. If you add new features, don't forget to add unit tests for them.

To leave the virtualenv, call deactivate or close the shell.

Install your local version

If you want to use your local version for productive work, pip-install it from within the local project folder:

pip install --user --upgrade .

The --user option is not necessary when you are inside a virtualenv or if you have write-permission to the system-wise Python directories. The --upgrade option makes sure that an already existing pyhepmc version is replaced.

License

pyhepmc is covered by the BSD 3-clause license, see the LICENSE file for details. This license only applies to the pyhepmc code. The connected external libraries HepMC3 and pybind11 are covered by other licenses, as described in their respective LICENSE files.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyhepmc-2.0.0b3.tar.gz (290.6 kB view details)

Uploaded Source

Built Distributions

pyhepmc-2.0.0b3-cp310-cp310-win_amd64.whl (333.1 kB view details)

Uploaded CPython 3.10 Windows x86-64

pyhepmc-2.0.0b3-cp310-cp310-win32.whl (278.7 kB view details)

Uploaded CPython 3.10 Windows x86

pyhepmc-2.0.0b3-cp310-cp310-musllinux_1_1_x86_64.whl (925.9 kB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

pyhepmc-2.0.0b3-cp310-cp310-musllinux_1_1_i686.whl (1.0 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ i686

pyhepmc-2.0.0b3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (427.9 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

pyhepmc-2.0.0b3-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl (451.5 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686

pyhepmc-2.0.0b3-cp310-cp310-macosx_10_9_x86_64.whl (371.6 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

pyhepmc-2.0.0b3-cp310-cp310-macosx_10_9_universal2.whl (706.3 kB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64)

pyhepmc-2.0.0b3-cp39-cp39-win_amd64.whl (333.1 kB view details)

Uploaded CPython 3.9 Windows x86-64

pyhepmc-2.0.0b3-cp39-cp39-win32.whl (278.8 kB view details)

Uploaded CPython 3.9 Windows x86

pyhepmc-2.0.0b3-cp39-cp39-musllinux_1_1_x86_64.whl (926.2 kB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

pyhepmc-2.0.0b3-cp39-cp39-musllinux_1_1_i686.whl (1.0 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ i686

pyhepmc-2.0.0b3-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (386.3 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

pyhepmc-2.0.0b3-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl (404.3 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ i686

pyhepmc-2.0.0b3-cp39-cp39-macosx_10_9_x86_64.whl (371.7 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

pyhepmc-2.0.0b3-cp39-cp39-macosx_10_9_universal2.whl (706.5 kB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

pyhepmc-2.0.0b3-cp38-cp38-win_amd64.whl (333.3 kB view details)

Uploaded CPython 3.8 Windows x86-64

pyhepmc-2.0.0b3-cp38-cp38-win32.whl (278.8 kB view details)

Uploaded CPython 3.8 Windows x86

pyhepmc-2.0.0b3-cp38-cp38-musllinux_1_1_x86_64.whl (926.0 kB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

pyhepmc-2.0.0b3-cp38-cp38-musllinux_1_1_i686.whl (1.0 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ i686

pyhepmc-2.0.0b3-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (386.0 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

pyhepmc-2.0.0b3-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl (403.9 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ i686

pyhepmc-2.0.0b3-cp38-cp38-macosx_10_9_x86_64.whl (371.7 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

pyhepmc-2.0.0b3-cp38-cp38-macosx_10_9_universal2.whl (706.4 kB view details)

Uploaded CPython 3.8 macOS 10.9+ universal2 (ARM64, x86-64)

pyhepmc-2.0.0b3-cp37-cp37m-win_amd64.whl (331.2 kB view details)

Uploaded CPython 3.7m Windows x86-64

pyhepmc-2.0.0b3-cp37-cp37m-win32.whl (281.0 kB view details)

Uploaded CPython 3.7m Windows x86

pyhepmc-2.0.0b3-cp37-cp37m-musllinux_1_1_x86_64.whl (938.7 kB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ x86-64

pyhepmc-2.0.0b3-cp37-cp37m-musllinux_1_1_i686.whl (1.0 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ i686

pyhepmc-2.0.0b3-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (388.7 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

pyhepmc-2.0.0b3-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl (408.9 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ i686

pyhepmc-2.0.0b3-cp37-cp37m-macosx_10_9_x86_64.whl (366.5 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

pyhepmc-2.0.0b3-cp36-cp36m-win_amd64.whl (331.3 kB view details)

Uploaded CPython 3.6m Windows x86-64

pyhepmc-2.0.0b3-cp36-cp36m-win32.whl (281.0 kB view details)

Uploaded CPython 3.6m Windows x86

pyhepmc-2.0.0b3-cp36-cp36m-musllinux_1_1_x86_64.whl (938.6 kB view details)

Uploaded CPython 3.6m musllinux: musl 1.1+ x86-64

pyhepmc-2.0.0b3-cp36-cp36m-musllinux_1_1_i686.whl (1.0 MB view details)

Uploaded CPython 3.6m musllinux: musl 1.1+ i686

pyhepmc-2.0.0b3-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (388.6 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64

pyhepmc-2.0.0b3-cp36-cp36m-manylinux_2_12_i686.manylinux2010_i686.whl (408.6 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ i686

pyhepmc-2.0.0b3-cp36-cp36m-macosx_10_9_x86_64.whl (366.6 kB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file pyhepmc-2.0.0b3.tar.gz.

File metadata

  • Download URL: pyhepmc-2.0.0b3.tar.gz
  • Upload date:
  • Size: 290.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for pyhepmc-2.0.0b3.tar.gz
Algorithm Hash digest
SHA256 556693cecc1cc78da0d0b6d2ecc0328b4ad200801ffccf8194f871585cef1e9a
MD5 2f03887514fe95eee07232f6e07b347d
BLAKE2b-256 856b4ec98a707a0a3bee8f8fdce21e68ddd3bce4d98ba0a397d57ca0d03b223f

See more details on using hashes here.

File details

Details for the file pyhepmc-2.0.0b3-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for pyhepmc-2.0.0b3-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 ac416a64aae4d553ecea3c12324c40bc9a92a6b363cb814e1f755a27c5638474
MD5 a715bac7a555580bb17797092f26322d
BLAKE2b-256 cdeb5d43448ca845eb39108d2080d0bed534fd8125abc52818203c999f6baf11

See more details on using hashes here.

File details

Details for the file pyhepmc-2.0.0b3-cp310-cp310-win32.whl.

File metadata

  • Download URL: pyhepmc-2.0.0b3-cp310-cp310-win32.whl
  • Upload date:
  • Size: 278.7 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for pyhepmc-2.0.0b3-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 c872ea50c3ad46cd851d677ca420a587993da713139f395f955c1dad00eda7ae
MD5 128803bbbdefee1d31137682d22d666d
BLAKE2b-256 591fbc54f72cd4d22069b60ff0a8f3c004a338f6b10702933fb799d323c15435

See more details on using hashes here.

File details

Details for the file pyhepmc-2.0.0b3-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pyhepmc-2.0.0b3-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 f67f33acc6623d1f3f9015af010dc5b6e28e8c5831021e9b9b6907128d38bebc
MD5 7b60c4e74102b2ae26f8f2bb157ad51b
BLAKE2b-256 f5844085bb673c4cd07ab57ce768bb780a5e43c8936124f5637d7b0cb039d27e

See more details on using hashes here.

File details

Details for the file pyhepmc-2.0.0b3-cp310-cp310-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for pyhepmc-2.0.0b3-cp310-cp310-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 fa23d2f5eaf808ac6d17cd11af0454f90ac60162a805b4f33fb42a2ef783201c
MD5 7382621f23b4838ae2debd68395bcaff
BLAKE2b-256 1585a650bad8688fc23ef60facce66bc1847d60b0160790dacaffd1f9df0b781

See more details on using hashes here.

File details

Details for the file pyhepmc-2.0.0b3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyhepmc-2.0.0b3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ccf2a349dac096a682ae4009da92cfa46229640a1830b4d52ec2bb2260a70e19
MD5 be4131159f27e3fc6f0e0b3c00247622
BLAKE2b-256 8ebcc853ee1ac6ccb65f74d2f16cea2e594cc0b87c9e925becf22e26b90cb628

See more details on using hashes here.

File details

Details for the file pyhepmc-2.0.0b3-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyhepmc-2.0.0b3-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 9f23efd6d95eca0c6955a1bf276777b5d72ffb9a61a7594e3d830d8cf4de7e36
MD5 7a02069286834e5deda454f1c5bf28a8
BLAKE2b-256 fb12fde93a5b45ae5f9c1270130304f6b5e016248dd587bea6aab38964293707

See more details on using hashes here.

File details

Details for the file pyhepmc-2.0.0b3-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyhepmc-2.0.0b3-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 54af5c211e0daa00cf47d33a86815e1d9cc8d9a7d173af4beaa04a796b9afa49
MD5 abdb9f0bb3e156881d75550d038672a1
BLAKE2b-256 e079be412fe4cbec9897d885925a1d7b921d8f89369a93c610d547f07450eb03

See more details on using hashes here.

File details

Details for the file pyhepmc-2.0.0b3-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for pyhepmc-2.0.0b3-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 280f8b133872b5a0dc8de4aceaa0ba1c192bd1ef4c1c961777521f697829ddd5
MD5 682ed9288dedff7f3f0613ad0295b647
BLAKE2b-256 a6afce1b7bb98f6e99ae7f3a3950683a2be0ce08c47d97c6b04e13c684c3d3e2

See more details on using hashes here.

File details

Details for the file pyhepmc-2.0.0b3-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: pyhepmc-2.0.0b3-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 333.1 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for pyhepmc-2.0.0b3-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 600e1cb0af204879f844fc17fc6fce68c76dca9896e7e3bdada0fef6d12f15bd
MD5 f0db9e28f8821dcb5caadfcef51c6005
BLAKE2b-256 44db85254eea1ddb6c2ae11ee410f1827fc22f0ae02a3fb09d8e056610c8dd12

See more details on using hashes here.

File details

Details for the file pyhepmc-2.0.0b3-cp39-cp39-win32.whl.

File metadata

  • Download URL: pyhepmc-2.0.0b3-cp39-cp39-win32.whl
  • Upload date:
  • Size: 278.8 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for pyhepmc-2.0.0b3-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 58fa6d9f94d0d33e4c19f671b19d5a2b93ae9b8d190643f600764c8a45730abf
MD5 06f9645593720ac16f258787a0bd2623
BLAKE2b-256 c1f674e331a90fbca98ab15fde1762e03547899b9379803364ef348c15bab51c

See more details on using hashes here.

File details

Details for the file pyhepmc-2.0.0b3-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pyhepmc-2.0.0b3-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 7d48318f7575263f9d8c1a96b509b4c9be27302ca9f84a4650c007dfd8a8610f
MD5 f691318f8ef66cd185e9f23b8c566664
BLAKE2b-256 873037091a1857a10387816bd0e01cbc991fb1272be1793f5119765b6ccdc1ec

See more details on using hashes here.

File details

Details for the file pyhepmc-2.0.0b3-cp39-cp39-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for pyhepmc-2.0.0b3-cp39-cp39-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 ebdbfa323d73250c99387e8c3f19faf4bf6cb2bcb6641c290982d36d04acc24d
MD5 ed41a16a7de60a0c0fde57731582200d
BLAKE2b-256 86dde584200fc2c218ed6dd4b1580cc53645ff38384a86baec15a0d1ad8bf19f

See more details on using hashes here.

File details

Details for the file pyhepmc-2.0.0b3-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for pyhepmc-2.0.0b3-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 06837910e86707b1356aa4892eb029b26217f2dc48f106ed646b5e9aab05e310
MD5 d2b9ac427af44dee6932231c34783351
BLAKE2b-256 bfa7a7c05256c4ca03eba074de54df191a04b7e074b7916bc6f7895fe33b43c2

See more details on using hashes here.

File details

Details for the file pyhepmc-2.0.0b3-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for pyhepmc-2.0.0b3-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 6c5fa73b64255dde5600c4a4584111c10508bebe4e7ae623d7bae7c61af54f4b
MD5 39b1ee876f93ddb072ca970dd8763e0e
BLAKE2b-256 49f024d37a93ee74e02f3d9af7ced0a5a4b86cb6e8d1bebf322f44e30a37c6e1

See more details on using hashes here.

File details

Details for the file pyhepmc-2.0.0b3-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyhepmc-2.0.0b3-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 3830a134930055e7d2f5b538f2378e8d1d1bf8e428d7c01c497cc6c1999acc9d
MD5 bbfde9b99825dc1c2b573441e9a709ca
BLAKE2b-256 5339aa4366a4c8c01a18698ea24e96836727a8af65f86b85f90ec6d6a8fb5165

See more details on using hashes here.

File details

Details for the file pyhepmc-2.0.0b3-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for pyhepmc-2.0.0b3-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 f4e628d7e6bf8e9340bcbd51864fefa6a921d71ab670201db0a4fb616b3a8074
MD5 ed02fb5c36f495bc46a5f3ef841ec888
BLAKE2b-256 21a94b1db4e1028295f4bf734cb935b2b52a301800b3a24e9dadb9f4200d1ddb

See more details on using hashes here.

File details

Details for the file pyhepmc-2.0.0b3-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: pyhepmc-2.0.0b3-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 333.3 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for pyhepmc-2.0.0b3-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 20a7866ed2830c5e65e1e355ade44355fe47c2cf1480a5fd1b50eaa1601004c2
MD5 1ce0a8d7152b25dcb698b111c24e24d6
BLAKE2b-256 b4e51c9f7ff356583b8ef6940678cdbb681bcf669aafdd736f985b640b9e11c9

See more details on using hashes here.

File details

Details for the file pyhepmc-2.0.0b3-cp38-cp38-win32.whl.

File metadata

  • Download URL: pyhepmc-2.0.0b3-cp38-cp38-win32.whl
  • Upload date:
  • Size: 278.8 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for pyhepmc-2.0.0b3-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 3dcfcc8d78a66ede8ea0019e3f8deb36f4ab39addd855d6887e35ac74cf65031
MD5 5e7b0154204dd49d3a484c99fe6b4e8b
BLAKE2b-256 1315afad5386c7d11f85d90a7dd4851e4e29cf093dc53b319ac068754c7f33fd

See more details on using hashes here.

File details

Details for the file pyhepmc-2.0.0b3-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pyhepmc-2.0.0b3-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 3cca1072574b5e4b3d90ca577a787dae649c81eabf1c164a0988eb5518078122
MD5 a3860f8d2129bfbd25db8e92989caf15
BLAKE2b-256 7f254d8575d05f1e0c292058df3d4eaeb3a9b590e48aa9a0356315bfe545a92d

See more details on using hashes here.

File details

Details for the file pyhepmc-2.0.0b3-cp38-cp38-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for pyhepmc-2.0.0b3-cp38-cp38-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 b3845b92d147c9e7b995e538c78f9a1ad1a09f49f2d67817c5461bdcfc3a8e04
MD5 dab7d98a3239868c2dcfc8ff06aa9a0c
BLAKE2b-256 9053ce5bcb80eaa19f545c963329b698bc41e837914e6924a99894cb37580aab

See more details on using hashes here.

File details

Details for the file pyhepmc-2.0.0b3-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for pyhepmc-2.0.0b3-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 a9ea13ebe34831da793caa11b50ccc700cf22a7c5adcc447c9efe92d43ae7929
MD5 8ca73ba446c2a46319cf52aaeb21495d
BLAKE2b-256 7bff4d95a97e948ffa18944702fbe599a6175ddb9e278fd5e63b6d853109cef4

See more details on using hashes here.

File details

Details for the file pyhepmc-2.0.0b3-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for pyhepmc-2.0.0b3-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 3b63ca7edfca6347d3ec209baa3d98d529568d59d5d90f228daf99641e3bc892
MD5 09de9acc357336bf1f24f307dbccd2c5
BLAKE2b-256 61c14bf728008a3a5831bf6c98b1744e74484bbdd4a1d38b2167f563815d01df

See more details on using hashes here.

File details

Details for the file pyhepmc-2.0.0b3-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyhepmc-2.0.0b3-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 3838293898759750d5570f51988a6ebaedc47e44b1f429255f6d39dba5e21d0d
MD5 88f748a5720b8da4889162ceb1b487d2
BLAKE2b-256 dd774f6b73661d0dd8ac6a0606581ec4f1458e95d01e677a03e67b4e4ae72fd4

See more details on using hashes here.

File details

Details for the file pyhepmc-2.0.0b3-cp38-cp38-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for pyhepmc-2.0.0b3-cp38-cp38-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 54866bde7c035f956f04fbbd1405ce64257f2de5d9196445e59731ed1bdedb99
MD5 2a6d064bbbe04c291099e7b576b11545
BLAKE2b-256 89abaa2741070258f82acce79582abae0dd0c2b29479b91e3457476a9afe564c

See more details on using hashes here.

File details

Details for the file pyhepmc-2.0.0b3-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: pyhepmc-2.0.0b3-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 331.2 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for pyhepmc-2.0.0b3-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 8781836537692efe78e5b3a96c77f8fe16faced7da07f3507513db6c1389374d
MD5 1dd766b1d940a05a798b924a5ddb3c9c
BLAKE2b-256 aaf8f5834720def62c18b6c64f19a7e79f7ce84160a41635f4caa4d1d5895d60

See more details on using hashes here.

File details

Details for the file pyhepmc-2.0.0b3-cp37-cp37m-win32.whl.

File metadata

  • Download URL: pyhepmc-2.0.0b3-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 281.0 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for pyhepmc-2.0.0b3-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 c91c3e26ed895048a9482bfaeac4ef2484da67dca6350b7171887d2c3aa4411f
MD5 d0e57143496797ccdf35e3f9f85a690e
BLAKE2b-256 6a31ec3adac4edfd927d8088303448e3aa84a440be2358a7fb0cd76295593419

See more details on using hashes here.

File details

Details for the file pyhepmc-2.0.0b3-cp37-cp37m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pyhepmc-2.0.0b3-cp37-cp37m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 1e881d623ad38e24201f48a826378600d742e17b0c62af9cae241804c2c099fa
MD5 146ab74d34fcd52916803e9a7da0eb2c
BLAKE2b-256 6ec29b0cb17990ee22004f2b24859cc2aeea58e6f26f66e71cef125802144065

See more details on using hashes here.

File details

Details for the file pyhepmc-2.0.0b3-cp37-cp37m-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for pyhepmc-2.0.0b3-cp37-cp37m-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 920bd46efcf5be2d262a0e72178c20ca036da339c10d1fd65f32a7213c5625df
MD5 f49ffffd31da9f44135b9b43ce1b3ca7
BLAKE2b-256 892feb91bc45b924df0afddedb03a3604895ec6d2eaf1c96bec3ed6d61f19423

See more details on using hashes here.

File details

Details for the file pyhepmc-2.0.0b3-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for pyhepmc-2.0.0b3-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 d5c1e0fc8377eae1f97a2a675afc4f443bb5a4868dc12cb045ad2f0d15d607b0
MD5 a26d13190c5fc1dcd0072f4a7403714d
BLAKE2b-256 4b2791c8bc0cc07e841171ad0426314e8a43aae3924bf6a816e1996b57a37e40

See more details on using hashes here.

File details

Details for the file pyhepmc-2.0.0b3-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for pyhepmc-2.0.0b3-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 8a5b012e9dec5aa37219ede3af80bfc18c3c14b13ba1c4ab261832fb78200d61
MD5 293c18fb21b862b327fb41e833a73748
BLAKE2b-256 a97fa0e858c298e21afd5237621f8b1bce3cd9cd40ec4b93b25a49bb33edafef

See more details on using hashes here.

File details

Details for the file pyhepmc-2.0.0b3-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyhepmc-2.0.0b3-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 a6ea0e3c59b26ec75ace6d1b23671ddae3f97b5d0337f8c4d6e7f6c293d7a1d4
MD5 f1f3ca66cf9aa80ca524ee418c13093e
BLAKE2b-256 0a9a37a257dcc242fa25f52872c735c5a2b6d5eac20015c52909bb262051259d

See more details on using hashes here.

File details

Details for the file pyhepmc-2.0.0b3-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: pyhepmc-2.0.0b3-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 331.3 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for pyhepmc-2.0.0b3-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 cc5a1d8c421e4d150da25462a84fc2f930abed86487a610c3d1fb9fe0d4aa23b
MD5 ca411adf42bf4266aee50e6fbbcf7b48
BLAKE2b-256 da3f1293468b8456130a13e15ca89e51ed3ab19af0740a9d10b23881d878c3e2

See more details on using hashes here.

File details

Details for the file pyhepmc-2.0.0b3-cp36-cp36m-win32.whl.

File metadata

  • Download URL: pyhepmc-2.0.0b3-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 281.0 kB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for pyhepmc-2.0.0b3-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 83e86c3724841ef1fbd79f2e3688ac17eb5e2d9a89039847d655489b1ec30ff6
MD5 da8eade8dde6db354454dcac88fc59b2
BLAKE2b-256 cc7552f7a63b4fb2bbdfe47fcb1f5f72d4618bc2fd77e3683f21641ffda15997

See more details on using hashes here.

File details

Details for the file pyhepmc-2.0.0b3-cp36-cp36m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pyhepmc-2.0.0b3-cp36-cp36m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 b971e0d976573aa51e9a25f033eae7b44147641ad0d7b5f0c35399543211acc3
MD5 12dbefb810f33c84ec82823026ebc687
BLAKE2b-256 8c86e4e7a5cd026495ddedf4b97dc88c23a767dbeaef90061f6fc71fc5ece256

See more details on using hashes here.

File details

Details for the file pyhepmc-2.0.0b3-cp36-cp36m-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for pyhepmc-2.0.0b3-cp36-cp36m-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 5c560555c9942e217c69e478f1b133a389cb396146fe611024bfde7a01bab2fd
MD5 e8f573f39910b537de8dcbaead12e6e1
BLAKE2b-256 433e36e0366ec7d0b001ac7fe4ea3a9cad5ee2c44b3c81f91996da33816c5181

See more details on using hashes here.

File details

Details for the file pyhepmc-2.0.0b3-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for pyhepmc-2.0.0b3-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 9128a87f41e8c23a2e9c99c00e7440ae73d37b4b158b52ea8a326aa4fd507473
MD5 180f922217b78a6bd717341b7f8f438e
BLAKE2b-256 953ad51b40d228fa8a253f1a3b1b104ebecdcf5548979209e4a482f2bd274b87

See more details on using hashes here.

File details

Details for the file pyhepmc-2.0.0b3-cp36-cp36m-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for pyhepmc-2.0.0b3-cp36-cp36m-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 9d17fc654039b263a3d089fd52a499a6f266e207cdaa433ece9b7fb631ed8e7d
MD5 d2649ebe9663f21e0c4f5f302424387e
BLAKE2b-256 1f487648c149930fc515efa8788385aad08d30a48bc5b818b16b9373e5154b18

See more details on using hashes here.

File details

Details for the file pyhepmc-2.0.0b3-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyhepmc-2.0.0b3-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 78c11d761788f395a82f4feef1918912a2df05e86672120c8da1ced6a20a59b8
MD5 9df1899ce774ee0f788d3741e79aac7a
BLAKE2b-256 de29edcd86be95b7d68d733c6fd0b95e50d221e856a4fbc3b908ee2ea2ee3785

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page