Skip to main content

Pythonic interface to the HepMC3 C++ library.

Project description

pyhepmc

A Pythonic wrapper for the HepMC3 C++ library.

pyhepmc was formerly known as pyhepmc-ng. The development of pyhepmc-ng continues in the pyhepmc package.

PyPI version Coverage Scikit-HEP

HepMC3 has its own Python bindings. Why should you use these one?

pyhepmc is easy to install

The command pip install pyhepmc should work on all Python versions >= 3.6 and all common architectures, since we publish binary wheels.

Building from source is also easy. External software is not required, pyhepmc comes with the source of both pybind11 for the bindings and HepMC3.

pyhepmc is actively developed

pyhepmc is part of the Scikit-HEP project, which aims to provide all tools needed by particle physicists to do data analysis in Python. It also gets official support from the HepMC3 project.

pyhepmc is unit tested

Everything in pyhepmc is unit tested.

pyhepmc is Pythonic

pyhepmc is a hand-crafted mapping of C++ code to Python. It supports Python idioms where appropriate.

  • C++ methods which act like properties are represented as properties, e.g. GenParticle::set_status and GenParticle::status are mapped to a single GenParticle.status field in Python
  • Tuples and lists are implicitly convertible to FourVectors
  • Vectors of objects on the C++ side are mapped to Python lists
  • ReaderAscii and WriterAscii support the context manager protocol
  • A convenient open function is provided for reading and writing HepMC files

Documentation

pyhepmc currently has no separate documentation, but it mirrors the C++ interface of the HepMC3 library, which is documented here: http://hepmc.web.cern.ch/hepmc.

License

pyhepmc is covered by the BSD 3-clause license, see the LICENSE file for details. This license only applies to the pyhepmc code. The connected external libraries HepMC3 and pybind11 are covered by other licenses, as described in their respective LICENSE files.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyhepmc-2.1.1.tar.gz (293.3 kB view details)

Uploaded Source

Built Distributions

pyhepmc-2.1.1-cp310-cp310-win_amd64.whl (345.6 kB view details)

Uploaded CPython 3.10 Windows x86-64

pyhepmc-2.1.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (441.1 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

pyhepmc-2.1.1-cp310-cp310-macosx_10_9_x86_64.whl (386.0 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

pyhepmc-2.1.1-cp310-cp310-macosx_10_9_universal2.whl (737.2 kB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64)

pyhepmc-2.1.1-cp39-cp39-win_amd64.whl (345.5 kB view details)

Uploaded CPython 3.9 Windows x86-64

pyhepmc-2.1.1-cp39-cp39-win32.whl (287.1 kB view details)

Uploaded CPython 3.9 Windows x86

pyhepmc-2.1.1-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (400.9 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

pyhepmc-2.1.1-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl (419.7 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ i686

pyhepmc-2.1.1-cp39-cp39-macosx_10_9_x86_64.whl (386.1 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

pyhepmc-2.1.1-cp39-cp39-macosx_10_9_universal2.whl (737.3 kB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

pyhepmc-2.1.1-cp38-cp38-win_amd64.whl (345.4 kB view details)

Uploaded CPython 3.8 Windows x86-64

pyhepmc-2.1.1-cp38-cp38-win32.whl (287.1 kB view details)

Uploaded CPython 3.8 Windows x86

pyhepmc-2.1.1-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (400.5 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

pyhepmc-2.1.1-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl (419.2 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ i686

pyhepmc-2.1.1-cp38-cp38-macosx_10_9_x86_64.whl (386.1 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

pyhepmc-2.1.1-cp38-cp38-macosx_10_9_universal2.whl (737.3 kB view details)

Uploaded CPython 3.8 macOS 10.9+ universal2 (ARM64, x86-64)

pyhepmc-2.1.1-cp37-cp37m-win_amd64.whl (343.7 kB view details)

Uploaded CPython 3.7m Windows x86-64

pyhepmc-2.1.1-cp37-cp37m-win32.whl (289.9 kB view details)

Uploaded CPython 3.7m Windows x86

pyhepmc-2.1.1-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (402.8 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

pyhepmc-2.1.1-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl (422.8 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ i686

pyhepmc-2.1.1-cp37-cp37m-macosx_10_9_x86_64.whl (379.6 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file pyhepmc-2.1.1.tar.gz.

File metadata

  • Download URL: pyhepmc-2.1.1.tar.gz
  • Upload date:
  • Size: 293.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for pyhepmc-2.1.1.tar.gz
Algorithm Hash digest
SHA256 55781ebf1d1946556299c05bcf91692c6a88d84244171b987ab1af06b17d69bf
MD5 d31f27bdca3a06f62bac14856d01c4a1
BLAKE2b-256 a7ebd4ab163d7316c572255e9849b7ee68f26b06825036f0452a761c3a937ef1

See more details on using hashes here.

File details

Details for the file pyhepmc-2.1.1-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: pyhepmc-2.1.1-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 345.6 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for pyhepmc-2.1.1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 b56382d9e73a666809674d132616db8756d142b924b5fd9ef3d0677ec6ac2861
MD5 cfae5d810e797bd0fead682be2aa02fc
BLAKE2b-256 9ca70bd9f0f11c09341a618f4021b3f32b0026bb3ae5359b7069f72da6b38f75

See more details on using hashes here.

File details

Details for the file pyhepmc-2.1.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyhepmc-2.1.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c31be38798bdd1f8bb30e8cf10b9d429abc8792750d69ad78ca56603b23cd93a
MD5 3aca59e2fbc186354674712d23bd1b5b
BLAKE2b-256 b42e696d21e50705646ac03001a2065e054bce5c8350022082ea4908d0780531

See more details on using hashes here.

File details

Details for the file pyhepmc-2.1.1-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyhepmc-2.1.1-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 3d7e76027734f391e15f3e22b6f0fa54e581ce2a35297622ec87102f37acc248
MD5 efd2968af65ec0de53cfdba827d7805f
BLAKE2b-256 d226cfc5f92437405ad41f9477f1e8e5ff82eb2bc9a7c71b379a2e1727fb73ce

See more details on using hashes here.

File details

Details for the file pyhepmc-2.1.1-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for pyhepmc-2.1.1-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 134c01bf68c8254c131e295e4289b2d37242af8e82dc2e3168b89fe703016a68
MD5 a31a761d90ae82e2477bf3e9bdc82650
BLAKE2b-256 77faf8b0deec3fcf3741ed7fc39d533eb161e77f478910a1025e60f4becabe0e

See more details on using hashes here.

File details

Details for the file pyhepmc-2.1.1-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: pyhepmc-2.1.1-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 345.5 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for pyhepmc-2.1.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 9d76668089609d7d6022802883c7323edaf6ce8d8bebcf592604b30bc0f21f00
MD5 b88a62a8a533ac9980054b73852192cb
BLAKE2b-256 894ab5fe49f71a3a21856a6944ee98d5506581e3e5a01f214bea24a1d26eb145

See more details on using hashes here.

File details

Details for the file pyhepmc-2.1.1-cp39-cp39-win32.whl.

File metadata

  • Download URL: pyhepmc-2.1.1-cp39-cp39-win32.whl
  • Upload date:
  • Size: 287.1 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for pyhepmc-2.1.1-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 349638ce803a320daa2aab3c006cb95a964c1bfaa4e20f76810a2a35ead6ebcc
MD5 f9d29ed5370447aac69ed56e58d557e6
BLAKE2b-256 62c1c336f7ae51824cccdc5dcb0e509767fd2d8ef272d319e3c3d1b7b9a3177d

See more details on using hashes here.

File details

Details for the file pyhepmc-2.1.1-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for pyhepmc-2.1.1-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 f9347c704bd61c8956d9b64aabba4de04767042b8e17dc928b452e544c49f9d4
MD5 920f67b5581966af18da24309021bd45
BLAKE2b-256 37afda5efa6cd8de88ca02f2d4dc9bccc41f496f062452760a4e44ebb78dd3f4

See more details on using hashes here.

File details

Details for the file pyhepmc-2.1.1-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for pyhepmc-2.1.1-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 901c8dc9cf98d06033b7371f70962cbd677853017565524b01f4f3cf335e245e
MD5 87bcfd1fd1937099572f94c68919757b
BLAKE2b-256 9dc5c9fea899a4bd05a644d3475025fdcfcfcff969203acbebfaa711e727b0ae

See more details on using hashes here.

File details

Details for the file pyhepmc-2.1.1-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyhepmc-2.1.1-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 994ac4ae3290acaadd152a18a12ede01f9269fd7add563bd47fd0cdb04c5a7ee
MD5 9401a0c9e0b2855796f23ec47ff45365
BLAKE2b-256 cfe6d33cf97c7e182b88fa1281333d7a34861cb8b58f6a2355625e574fc4fd10

See more details on using hashes here.

File details

Details for the file pyhepmc-2.1.1-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for pyhepmc-2.1.1-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 e9fd5be4e117bad14a6cd1e8294d78767eac574aa9cfe828daf91afe6838eb67
MD5 d979f70a4aeb71133fa5e98509c3da7a
BLAKE2b-256 940cda1608b1ff6b2048990c008297aba8f93f1481f213fdea3d5210e34a2200

See more details on using hashes here.

File details

Details for the file pyhepmc-2.1.1-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: pyhepmc-2.1.1-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 345.4 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for pyhepmc-2.1.1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 ae8b414a7a8bca5e9ec00ccaae2e5ef472fc2580564106a618ea5df3f299261c
MD5 7360c05d447bb3488c366d0b5535a646
BLAKE2b-256 d44a5fe4742b1cc1d5edded0ecb264cb0a42a451456f032248116b24534f258b

See more details on using hashes here.

File details

Details for the file pyhepmc-2.1.1-cp38-cp38-win32.whl.

File metadata

  • Download URL: pyhepmc-2.1.1-cp38-cp38-win32.whl
  • Upload date:
  • Size: 287.1 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for pyhepmc-2.1.1-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 757ec99209155991abe5ff6d1102f0b76bdeeb1b57d7e4e7dc30ce4d3960bff0
MD5 8c7314823143fa777ecaa34678114349
BLAKE2b-256 fa2ce27eb727531a937b3be1a085cd175616e2f0b1c835cf1e67937f0a03b3f7

See more details on using hashes here.

File details

Details for the file pyhepmc-2.1.1-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for pyhepmc-2.1.1-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 087b4333e6f60f183c3cca9c8e45e02df1f6a8d6f621183ded96ddc197856a4c
MD5 654b079f295680570f9ad43e1049b3fd
BLAKE2b-256 f8d8bb52759d11cffa375acfba3b4dda90f458bfe29c20ee05b2e9a6afbe44b0

See more details on using hashes here.

File details

Details for the file pyhepmc-2.1.1-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for pyhepmc-2.1.1-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 56cbd69bab8b08b412d2d1054204e41b8edbcde240ddcb5b43d203f00c75ceca
MD5 d287375767a71cc6902d17788713f376
BLAKE2b-256 9cba7b1f769bd67a48e00e983bf5395bbc5417856fd9f926362bf5ba887079d9

See more details on using hashes here.

File details

Details for the file pyhepmc-2.1.1-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyhepmc-2.1.1-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 b0b227b04e118aafdefd618fb19e349b63abd38c0fd269291fd7df7af29ffff3
MD5 cd238510670d34a1d2f0fb36f848fe25
BLAKE2b-256 169de5596f4ef415937bbeee4e5fba013cf191c8e6a5899ff72703e731e1cd54

See more details on using hashes here.

File details

Details for the file pyhepmc-2.1.1-cp38-cp38-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for pyhepmc-2.1.1-cp38-cp38-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 35c111395eab4127e74cae42c935e26e7e1692f81ec2b1c9962b3d3e6c7553ec
MD5 41b24bd0f2fa5b007f205fedef2d209e
BLAKE2b-256 317aacdb1277dc5ab97c50cb30f76e07b97e798473d0a86a1575a642c2b56896

See more details on using hashes here.

File details

Details for the file pyhepmc-2.1.1-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: pyhepmc-2.1.1-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 343.7 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for pyhepmc-2.1.1-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 cebcb1113a715c3eb693a320e8519ed613799667718493b202286a36624cb99f
MD5 ccd6c4c0763de24c124e226cbafa3b49
BLAKE2b-256 4fb94492fcc3d4ad7e0ff85b3ef39b1eaa72cec74fc37de83286c054a9c00949

See more details on using hashes here.

File details

Details for the file pyhepmc-2.1.1-cp37-cp37m-win32.whl.

File metadata

  • Download URL: pyhepmc-2.1.1-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 289.9 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for pyhepmc-2.1.1-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 8b53f8c19d216c420c39d0e23b0ec35771194ae741a6fbb7849f7904d3bd5edc
MD5 36839e7d6d71c41e3406e1d4d4aa2f3e
BLAKE2b-256 6f84e9bcf8e98043e6ad852b248281d8d4aae3094faacb35e4a9d1e671daa106

See more details on using hashes here.

File details

Details for the file pyhepmc-2.1.1-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for pyhepmc-2.1.1-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 0ae1095cbdbca4521b771387702984297395d3a23d72fa55f33e7bcba3ed577b
MD5 7fbfb3d2a161b52766f5c0e0e3e648ad
BLAKE2b-256 5eb5ddf82e22a777f70749a776a36479cb72eb1c1312926e6bee1295fc2538a2

See more details on using hashes here.

File details

Details for the file pyhepmc-2.1.1-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for pyhepmc-2.1.1-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 c05036f9d477ad6e8a7ae102022838c5becc88ef48a46f414692af93bd3aaa1d
MD5 f291fbe196024d1d346798326309cbaf
BLAKE2b-256 0052dfc7474c57f04e961a8ef838c9fa270a45ba0b7d8f61857b0ae9d0a70ade

See more details on using hashes here.

File details

Details for the file pyhepmc-2.1.1-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyhepmc-2.1.1-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 a6e6e5dabb20513b79c8454fd5fc624d93654c9c4ac944b948160e55eea05d33
MD5 647cbc0fea38bbb32e79756d9dce5b92
BLAKE2b-256 9ccf94e8a21de2b7ac8a518f48fcd4a6874545ee5653713899ef5b6c757a21b8

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page