Skip to main content

Pythonic interface to the HepMC3 C++ library licensed under LGPL-v3.

Project description

A Pythonic wrapper for the HepMC3 C++ library.

https://scikit-hep.org/assets/images/Scikit--HEP-Project-blue.svg https://badge.fury.io/py/pyhepmc.svg https://coveralls.io/repos/github/scikit-hep/pyhepmc/badge.svg?branch=main https://zenodo.org/badge/DOI/10.5281/zenodo.7013498.svg

pyhepmc was formerly known as pyhepmc-ng. The development of pyhepmc-ng continues in the pyhepmc package.

HepMC3 has its own Python bindings. Why should you use these?

pyhepmc is easy to install

The command pip install pyhepmc just works on all common platforms. Since we publish binary wheels, you don’t need to compile anything. Since we include the HepMC3 library, you don’t need to install it separately either.

However, building from source is also easy. External software is not required. Just download the repository with git clone --recursive and run pip install -v -e ..

pyhepmc is Pythonic, Numpy-friendy, and Jupyter notebook-friendly

pyhepmc is a hand-crafted mapping of C++ code to Python, see documentation for details, while the official HepMC3 bindings are generated by a script. The pyhepmc API has been optimised for safety, usability, and efficiency by a human expert, something that an automatic tool cannot provide. pyhepmc brings these unique features:

  • Python idioms are supported where appropriate.

  • Simple IO with pyhepmc.open.

  • An alternative Numpy API accelerates event processing up to 70x compared to the standard API.

  • The public API is fully documented with Python docstrings.

  • Objects are inspectable in Jupyter notebooks (have useful repr strings).

  • Events render as graphs in Jupyter notebooks (see next item).

pyhepmc supports visualizations powered by graphviz

pyhepmc can optionally visualize events, using the mature graphviz library as a backend.

docs/_static/pyhepmc.svg

pyhepmc is actively maintained

pyhepmc is part of the Scikit-HEP project, which aims to provide all tools needed by particle physicists to do data analysis in Python. It is developed in close collaboration with the HepMC3 project.

pyhepmc is thoroughly unit tested

We have close to 100% coverage for the Python API.

Documentation

Documentation is available here, and includes some examples (Jupyter notebooks). Furthermore, you can use Python’s help() browser to learn about the API. The documentation is generated from Python docstrings, which are translated from the HepMC3 library, which is documented here.

License

The pyhepmc code is covered by the BSD 3-clause license, but its main functionality comes from bundled software which is released under different licenses. The HepMC3 library is licensed under LGPL-v3 and bundles other software which is released under different licenses. See the files LICENSE and LICENSE_bundled in the source directory for details.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyhepmc-2.13.4.tar.gz (371.3 kB view details)

Uploaded Source

Built Distributions

pyhepmc-2.13.4-cp312-cp312-win_amd64.whl (488.3 kB view details)

Uploaded CPython 3.12 Windows x86-64

pyhepmc-2.13.4-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (617.7 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

pyhepmc-2.13.4-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (570.0 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

pyhepmc-2.13.4-cp312-cp312-macosx_10_9_x86_64.whl (573.8 kB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

pyhepmc-2.13.4-cp312-cp312-macosx_10_9_universal2.whl (1.1 MB view details)

Uploaded CPython 3.12 macOS 10.9+ universal2 (ARM64, x86-64)

pyhepmc-2.13.4-cp311-cp311-win_amd64.whl (487.0 kB view details)

Uploaded CPython 3.11 Windows x86-64

pyhepmc-2.13.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (620.0 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

pyhepmc-2.13.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (573.0 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

pyhepmc-2.13.4-cp311-cp311-macosx_10_9_x86_64.whl (564.1 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

pyhepmc-2.13.4-cp311-cp311-macosx_10_9_universal2.whl (1.0 MB view details)

Uploaded CPython 3.11 macOS 10.9+ universal2 (ARM64, x86-64)

pyhepmc-2.13.4-cp310-cp310-win_amd64.whl (486.8 kB view details)

Uploaded CPython 3.10 Windows x86-64

pyhepmc-2.13.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (619.9 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

pyhepmc-2.13.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (572.3 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

pyhepmc-2.13.4-cp310-cp310-macosx_10_9_x86_64.whl (564.1 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

pyhepmc-2.13.4-cp310-cp310-macosx_10_9_universal2.whl (1.0 MB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64)

pyhepmc-2.13.4-cp39-cp39-win_amd64.whl (486.9 kB view details)

Uploaded CPython 3.9 Windows x86-64

pyhepmc-2.13.4-cp39-cp39-win32.whl (413.7 kB view details)

Uploaded CPython 3.9 Windows x86

pyhepmc-2.13.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (572.6 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

pyhepmc-2.13.4-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (559.5 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

pyhepmc-2.13.4-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl (577.7 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ i686

pyhepmc-2.13.4-cp39-cp39-macosx_10_9_x86_64.whl (564.3 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

pyhepmc-2.13.4-cp39-cp39-macosx_10_9_universal2.whl (1.0 MB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

pyhepmc-2.13.4-cp38-cp38-win_amd64.whl (487.2 kB view details)

Uploaded CPython 3.8 Windows x86-64

pyhepmc-2.13.4-cp38-cp38-win32.whl (413.8 kB view details)

Uploaded CPython 3.8 Windows x86

pyhepmc-2.13.4-cp38-cp38-macosx_10_9_x86_64.whl (564.8 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

pyhepmc-2.13.4-cp38-cp38-macosx_10_9_universal2.whl (1.0 MB view details)

Uploaded CPython 3.8 macOS 10.9+ universal2 (ARM64, x86-64)

File details

Details for the file pyhepmc-2.13.4.tar.gz.

File metadata

  • Download URL: pyhepmc-2.13.4.tar.gz
  • Upload date:
  • Size: 371.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.2

File hashes

Hashes for pyhepmc-2.13.4.tar.gz
Algorithm Hash digest
SHA256 5570b451eff4d11962b4f6155f5157eda5427c9db0f8193c644043ce3fc6af73
MD5 adf20871fa936f70a9e14f832a97cda0
BLAKE2b-256 3c144f888a5ebb1aa2a53978fb6d1e50f6f972304e993dcd6ef62076dc23b830

See more details on using hashes here.

File details

Details for the file pyhepmc-2.13.4-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: pyhepmc-2.13.4-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 488.3 kB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.2

File hashes

Hashes for pyhepmc-2.13.4-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 60222ed494a661936551b7c2905865971c5eb1a01b77508be63149416ba50374
MD5 f11f37581fdfd41ba73748c748c1c19a
BLAKE2b-256 abe09c9e5492d7bbf75ce2b404f0321bebdc4771945ad5ff0497d2e5186bc1ec

See more details on using hashes here.

File details

Details for the file pyhepmc-2.13.4-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyhepmc-2.13.4-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 23f5aa8dbb9fb0a29efa9c9661b9a0b1b6e6110c147802afea277fdb4c15d339
MD5 206ff747ed41001c7f5da9ed0904f0ab
BLAKE2b-256 9caf44b47cdf25fe63cb06ac16cbd341c8b541e3d083a777a2c39f720946578b

See more details on using hashes here.

File details

Details for the file pyhepmc-2.13.4-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyhepmc-2.13.4-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 b6180d431f1d55fc80535ceac2d13613ed60b8ead01ebf096cfcdaef175d6598
MD5 e1cce2075faa479f62c26e93d26b8968
BLAKE2b-256 0fcc3cad00a3e469b832c7615f78a3bbc3f62a231c8bc26b22ddf40287647934

See more details on using hashes here.

File details

Details for the file pyhepmc-2.13.4-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyhepmc-2.13.4-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 bbe50566405275e5241da5c3670ebb679949edcb12a2b0da822678bc2441ae58
MD5 21fba92ef3cb163bd5edcd6e4c2280b8
BLAKE2b-256 02990651e5be49497e03a4efc361c57363a3e971288b70d663a96daeb98efa35

See more details on using hashes here.

File details

Details for the file pyhepmc-2.13.4-cp312-cp312-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for pyhepmc-2.13.4-cp312-cp312-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 2690d4c768e5b5a7c00c88aaa0fe4fe545c2d925a7053a792a4f7adf070fca23
MD5 8888c75182fbbe3e91cdddba8b2f0fd8
BLAKE2b-256 6ac00015dc698dc80759b81a7079db47d90ed3e3bd5f43c8fc4c108c6ec5310a

See more details on using hashes here.

File details

Details for the file pyhepmc-2.13.4-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: pyhepmc-2.13.4-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 487.0 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.2

File hashes

Hashes for pyhepmc-2.13.4-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 aad38d51ff7b02602484cb94b4f26532cc1e81881068a303ccb171821d8d0bd4
MD5 a32c1247aada449d757daf1eea6a5435
BLAKE2b-256 d3a83f7d2225946c1302d067732122b2bb9c924f116bc9da30df9b4a54de3a3e

See more details on using hashes here.

File details

Details for the file pyhepmc-2.13.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyhepmc-2.13.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 73eee798ed44b71a7c3f7987f3e113c4236bfd62a4ef732c9d02f34e87901240
MD5 0a8ae13ca37d71adcb7e98ea670e546c
BLAKE2b-256 2e0c39dd7abb1131e3f1224bc5860735583cebeb06cd59af1db7c9f4969cc72b

See more details on using hashes here.

File details

Details for the file pyhepmc-2.13.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyhepmc-2.13.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 3933f4922b1683e326a5a74f2c464ada71cf4a174bac6124260e2e2bc6d4ddf4
MD5 91296a98ae9cfd180a26fac107f2ab05
BLAKE2b-256 33fe73ab57c584d319b7441ccc0fcbd54d2304bf5d11717e710c5f5f97323189

See more details on using hashes here.

File details

Details for the file pyhepmc-2.13.4-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyhepmc-2.13.4-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 4f493c06d28d7c88c613ec498a3f7100b01d38dab1744a2dfdfb60df0eff2fa2
MD5 2d1fb6b0983faf7267c96ce923c9e650
BLAKE2b-256 ffe75ebf08f6e0c9a15b2dd3d8c638299ac404d51f3e6f26711c04af26ca3f87

See more details on using hashes here.

File details

Details for the file pyhepmc-2.13.4-cp311-cp311-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for pyhepmc-2.13.4-cp311-cp311-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 e1da32dad71b8ee89192e36365c95a68e0c194514cfe8bf1cfc718271afd79c6
MD5 26c0e5fd7364ddf428e763a21f7751d6
BLAKE2b-256 6dc7c2e11a94463f2d3e18dcd9e8f09347c7e3ff1203f36a416a859026acef43

See more details on using hashes here.

File details

Details for the file pyhepmc-2.13.4-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: pyhepmc-2.13.4-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 486.8 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.2

File hashes

Hashes for pyhepmc-2.13.4-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 9af1c3890ee4cca1c1c44626e0f96059ef143fadc1eab25379c5a6ce438f4e6b
MD5 a25ad3bb9dc5a86b57e391c23590d34c
BLAKE2b-256 fa1020bf8f0cc9ad4d3f909c1fbe20f97c72edf28e7e74e84c4814c62dcb401d

See more details on using hashes here.

File details

Details for the file pyhepmc-2.13.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyhepmc-2.13.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c1576515a3aa5a675e1935403275ca2f3e7e7796ee1cc0a951367e5081419485
MD5 a85d77307a707a8ffe8dc02263e5a568
BLAKE2b-256 a98fef1683256a2f394df6d5568b8191a297623cff3e240cb0ec2cca129e41c6

See more details on using hashes here.

File details

Details for the file pyhepmc-2.13.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyhepmc-2.13.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 f0f52115923b2b97fe145471e0a4e7c4a95743c58b8dc682f7e63ac73794d1f2
MD5 f0f4de50bd0d8072782827e058a07fc4
BLAKE2b-256 568845afb2332f3ca162e9ce85be1b5d93ac70b3c2ea3974e3d698efdef729db

See more details on using hashes here.

File details

Details for the file pyhepmc-2.13.4-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyhepmc-2.13.4-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 4781db288ad2617aa248c5e06fee9e6c9a2a65d7ab949b3d2155f20fa3dbf205
MD5 9653623f5e16d3bb8cf692c2e004f8fc
BLAKE2b-256 8899cc4442acbde39aedd73a0719df4531175b4184893b9b5ce85572e8a4c415

See more details on using hashes here.

File details

Details for the file pyhepmc-2.13.4-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for pyhepmc-2.13.4-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 99804a5d83a301ee6ae268d3464002358df15f558ffd1dcba072d39ed7e3daa5
MD5 f0a2302c653d0f44a2d051d10b85c22c
BLAKE2b-256 ef7370e6efcf4e34676d61ba728712fe1a92bd81d3ffde2983551303fbcdf0b9

See more details on using hashes here.

File details

Details for the file pyhepmc-2.13.4-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: pyhepmc-2.13.4-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 486.9 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.2

File hashes

Hashes for pyhepmc-2.13.4-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 1b05172236cb5297336600cab53ae72414b2ef848e3243da1ae84b3b20bf5255
MD5 629b21bb7cbd535986bfee845f0325b4
BLAKE2b-256 b1be7888a433a4b569f6529da528fd79ed216f9f1b10d1963dcfa6dc09378852

See more details on using hashes here.

File details

Details for the file pyhepmc-2.13.4-cp39-cp39-win32.whl.

File metadata

  • Download URL: pyhepmc-2.13.4-cp39-cp39-win32.whl
  • Upload date:
  • Size: 413.7 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.2

File hashes

Hashes for pyhepmc-2.13.4-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 dbc731ee3ec096bfc4b4d06bf1f52cee2578be8f2497da65fb8a4e9eaece5c96
MD5 9bb312743e17122c7192b220c57ee371
BLAKE2b-256 191938bf11d890b87f34a3b8bd2e5583a8b960bb83a7925ba2e2955cd0ea5df0

See more details on using hashes here.

File details

Details for the file pyhepmc-2.13.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyhepmc-2.13.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 b405bfcb673c9f0f99574e207765d9200bf6a119d1af53ea86feda2eaf20339d
MD5 5180e772218836eaf090385fe85f06c2
BLAKE2b-256 b09df6c18687c6bb949997c3ff5b9f153bcce2be26185a61300d28c88215bd1d

See more details on using hashes here.

File details

Details for the file pyhepmc-2.13.4-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for pyhepmc-2.13.4-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 434d19743b2db497395da9c61ec40c1f7462d2c6ef1e54db159a203d327e9fdd
MD5 66074d07bcea31593e86f4b49a99daff
BLAKE2b-256 24016bf050ff11b6effc50fe705f6cd539bff36f2ca225d818c3ac3b30fc0031

See more details on using hashes here.

File details

Details for the file pyhepmc-2.13.4-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for pyhepmc-2.13.4-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 bb649e77c46c8b7622fc0e60880e0ccc9045802da86f62396e5343613f5be448
MD5 1713e293bc73b56dda92af9ec27bdfe1
BLAKE2b-256 3471cff7a02318ad33aa024c1b1155f30a7057f1d85d59f6858a668684987408

See more details on using hashes here.

File details

Details for the file pyhepmc-2.13.4-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyhepmc-2.13.4-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 58937744ebd8415a23efa026dd9d0510acdd0d580f7d85cea7bc1a0ba1535d0f
MD5 d98757ad9fecb811a8bf5aa491902226
BLAKE2b-256 d3fcc07cf626db67eb7c55a9f038cc57c54d0d36f0284e0badaa47a8f696e261

See more details on using hashes here.

File details

Details for the file pyhepmc-2.13.4-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for pyhepmc-2.13.4-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 a7462236caea11ac227c753ed96362b2bd660236f4bc500bd63e92cffebbf03d
MD5 02484a4b2b85e8b66a873d0e540e6718
BLAKE2b-256 febe1fb14ffcd4b0114eb70a20f411144ea7d6b6b8acaeca18ca1741edc02d55

See more details on using hashes here.

File details

Details for the file pyhepmc-2.13.4-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: pyhepmc-2.13.4-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 487.2 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.2

File hashes

Hashes for pyhepmc-2.13.4-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 a5c19c363b8fbd00a427cc1cb793303d327201b97facb85b60561d0d1e354128
MD5 070cb398d3d48901f79a82035906b9a6
BLAKE2b-256 e9fb7383d0c7e39be40cb2820051ef5192912d29a9c158f3b8b8f9c10c184eaa

See more details on using hashes here.

File details

Details for the file pyhepmc-2.13.4-cp38-cp38-win32.whl.

File metadata

  • Download URL: pyhepmc-2.13.4-cp38-cp38-win32.whl
  • Upload date:
  • Size: 413.8 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.2

File hashes

Hashes for pyhepmc-2.13.4-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 ff1e7bd359ab0f00c09f47266436e07421d1d6057368aaab6897321268d0f8f3
MD5 87df119771b1decb0cacdc5b46b35b0e
BLAKE2b-256 48af050d88ba9d9472a3674254ca688d9e21d3372dc904121b1e1423c1460812

See more details on using hashes here.

File details

Details for the file pyhepmc-2.13.4-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyhepmc-2.13.4-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 3850eba782eabf1f4265f609b9429aa969de1d9013f0b62602924034593988e7
MD5 e8c5a3a8486beed28bcdd163ca0d9594
BLAKE2b-256 5a2fc91ea4c5e801aa46b5d8392ed41dffcf2a14ffa2c163b5008a2ae478c9a4

See more details on using hashes here.

File details

Details for the file pyhepmc-2.13.4-cp38-cp38-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for pyhepmc-2.13.4-cp38-cp38-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 ca1734494b288f6dac8453906c7edc3fc3323560ea8f09566031abfa61e990b7
MD5 3f2fd68d3c5511f2f797d7b0e9bd088d
BLAKE2b-256 d235f8cd2c20125bae60af4a758ddb62dab2a454458b65f212e612b42d7aa084

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page