Skip to main content

Pythonic interface to the HepMC3 C++ library licensed under LGPL-v3.

Project description

A Pythonic wrapper for the HepMC3 C++ library.

https://scikit-hep.org/assets/images/Scikit--HEP-Project-blue.svg https://badge.fury.io/py/pyhepmc.svg https://coveralls.io/repos/github/scikit-hep/pyhepmc/badge.svg?branch=main https://zenodo.org/badge/DOI/10.5281/zenodo.7013498.svg

pyhepmc was formerly known as pyhepmc-ng. The development of pyhepmc-ng continues in the pyhepmc package.

HepMC3 has its own Python bindings. Why should you use these?

pyhepmc is easy to install

The command pip install pyhepmc just works on all common platforms. Since we publish binary wheels, you don’t need to compile anything. Since we include the HepMC3 library, you don’t need to install it separately either.

However, building from source is also easy. External software is not required. Just download the repository with git clone --recursive and run pip install -v -e ..

pyhepmc is Pythonic and Jupyter notebook-friendly

pyhepmc is a hand-crafted mapping of C++ code to Python, see documentation for details. Python idioms are supported where appropriate. The classes are designed to render well in Jupyter notebooks. IO is simplified. Events can be visualized in Jupyter notebooks.

pyhepmc supports visualizations powered by graphviz

pyhepmc can optionally visualize events, using the mature graphviz library as a backend.

docs/_static/pyhepmc.svg

pyhepmc is actively maintained

pyhepmc is part of the Scikit-HEP project, which aims to provide all tools needed by particle physicists to do data analysis in Python. It is developed in close collaboration with the HepMC3 project.

pyhepmc is thoroughly unit tested

We have 100% coverage for the Python API.

Documentation

pyhepmc largely mirrors the C++ interface of the HepMC3 library, which is documented here. Parts of the documentation have been copied from HepMC3. Documentation is available as Python docstrings, so you can use Python’s help() browser to learn about the API. Alternatively, you can consult the online reference generated from these docstrings which includes some examples.

License

The pyhepmc code is covered by the BSD 3-clause license, but its main functionality comes from bundled software which is released under different licenses. The HepMC3 library is licensed under LGPL-v3 and bundles other software which is released under different licenses. See the files LICENSE and LICENSE_bundled in the source directory for details.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyhepmc-2.7.1.tar.gz (354.5 kB view details)

Uploaded Source

Built Distributions

pyhepmc-2.7.1-cp310-cp310-win_amd64.whl (443.2 kB view details)

Uploaded CPython 3.10 Windows x86-64

pyhepmc-2.7.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (570.9 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

pyhepmc-2.7.1-cp310-cp310-macosx_10_9_x86_64.whl (511.9 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

pyhepmc-2.7.1-cp310-cp310-macosx_10_9_universal2.whl (942.0 kB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64)

pyhepmc-2.7.1-cp39-cp39-win_amd64.whl (443.2 kB view details)

Uploaded CPython 3.9 Windows x86-64

pyhepmc-2.7.1-cp39-cp39-win32.whl (374.3 kB view details)

Uploaded CPython 3.9 Windows x86

pyhepmc-2.7.1-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (516.5 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

pyhepmc-2.7.1-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl (533.1 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ i686

pyhepmc-2.7.1-cp39-cp39-macosx_10_9_x86_64.whl (512.0 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

pyhepmc-2.7.1-cp39-cp39-macosx_10_9_universal2.whl (942.3 kB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

pyhepmc-2.7.1-cp38-cp38-win_amd64.whl (443.1 kB view details)

Uploaded CPython 3.8 Windows x86-64

pyhepmc-2.7.1-cp38-cp38-win32.whl (374.1 kB view details)

Uploaded CPython 3.8 Windows x86

pyhepmc-2.7.1-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (515.9 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

pyhepmc-2.7.1-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl (533.0 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ i686

pyhepmc-2.7.1-cp38-cp38-macosx_10_9_x86_64.whl (511.9 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

pyhepmc-2.7.1-cp38-cp38-macosx_10_9_universal2.whl (942.2 kB view details)

Uploaded CPython 3.8 macOS 10.9+ universal2 (ARM64, x86-64)

pyhepmc-2.7.1-cp37-cp37m-win_amd64.whl (440.7 kB view details)

Uploaded CPython 3.7m Windows x86-64

pyhepmc-2.7.1-cp37-cp37m-win32.whl (376.5 kB view details)

Uploaded CPython 3.7m Windows x86

pyhepmc-2.7.1-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (519.1 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

pyhepmc-2.7.1-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl (541.0 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ i686

pyhepmc-2.7.1-cp37-cp37m-macosx_10_9_x86_64.whl (504.5 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file pyhepmc-2.7.1.tar.gz.

File metadata

  • Download URL: pyhepmc-2.7.1.tar.gz
  • Upload date:
  • Size: 354.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.14

File hashes

Hashes for pyhepmc-2.7.1.tar.gz
Algorithm Hash digest
SHA256 ee51ed54ec5c2aae49a589c150954489ff7bf5a12d00346a700188d14bf51364
MD5 50cd9b5195e5b68b4af8077ebf1ea7bc
BLAKE2b-256 ec9f94e028cf44bcbc22d235d8ea5b1c0b82d005fc0543cae91cee509b4f7353

See more details on using hashes here.

File details

Details for the file pyhepmc-2.7.1-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: pyhepmc-2.7.1-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 443.2 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.14

File hashes

Hashes for pyhepmc-2.7.1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 110de7b25ca2c0e80d481a44e9788ea6f7be3ee62efc5530396761bf67738c2c
MD5 c464b52379434d88f16e11b4a1e7f5c2
BLAKE2b-256 cf374265ffc61124fd911aacaa226138f7dcbf37a0dc03986bd1f1a007c210b1

See more details on using hashes here.

File details

Details for the file pyhepmc-2.7.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyhepmc-2.7.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b0d962de5aa955f12780f2702e5cc7be125c09af030e493b07c309fe9e802c3d
MD5 155c825686d53d90991b8bea6479e1ef
BLAKE2b-256 d54667b0e57219f855ed7717789e0bc1ef81a43fc1cc5f4d138834c3850df6e3

See more details on using hashes here.

File details

Details for the file pyhepmc-2.7.1-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyhepmc-2.7.1-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 b6e48f8f0b14240e673d26d2255e077e517dec24ce01cb5bec7f759c08eaa31c
MD5 993197a4ef46a5cef445b0134669054d
BLAKE2b-256 6e567dd36931abbf4f9c6b624f394392013b4b51f9c55c71ac5fe81ac5472bb4

See more details on using hashes here.

File details

Details for the file pyhepmc-2.7.1-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for pyhepmc-2.7.1-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 12a901d775a4e0e7748dc4bc3d04246956f121aabd9be5af0dc928a788b215a1
MD5 3b45abe3d593572e084df19edc3de1d2
BLAKE2b-256 cd7191adc48d8d8eded49bcda198581ae42da67fa30acb0f42e28f8514584287

See more details on using hashes here.

File details

Details for the file pyhepmc-2.7.1-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: pyhepmc-2.7.1-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 443.2 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.14

File hashes

Hashes for pyhepmc-2.7.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 1a5afd2b7b2f8ee7eabf09ce553b00ad85981400e4090fb66e35ec092df5a690
MD5 e20f6e1f4d31dbaeed27d8cde250cfdf
BLAKE2b-256 6a795d4088f1b6e1d461616253f018222338f66dcd261909e020fdc8c8436e47

See more details on using hashes here.

File details

Details for the file pyhepmc-2.7.1-cp39-cp39-win32.whl.

File metadata

  • Download URL: pyhepmc-2.7.1-cp39-cp39-win32.whl
  • Upload date:
  • Size: 374.3 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.14

File hashes

Hashes for pyhepmc-2.7.1-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 b8ef87db74749bdbc00cd42aad6d0b19ed6323167c2726e186628808019f91ea
MD5 3c064bd4d92032c04c16c5d8db8e5ad0
BLAKE2b-256 08c04ec2b9f0fcef37800075d19e291e0b3e4e3ae5cbd572521e4a33f48e6f9b

See more details on using hashes here.

File details

Details for the file pyhepmc-2.7.1-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for pyhepmc-2.7.1-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 f4db18b692a904b2e228bc6fcd5c7ef2a3785d6400a92cc0acc7de2bb42ef92a
MD5 115fe2f3ee5a6f8ee15b42cf71cf569a
BLAKE2b-256 e27b1ed32a6c59156059341a38957fc896718dee0e848cd4cc88f784cc9a8685

See more details on using hashes here.

File details

Details for the file pyhepmc-2.7.1-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for pyhepmc-2.7.1-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 c0abcf14877f4bcfcb420ffff84f85383ba894855a1571aa2756a41ee4ed40cc
MD5 a25ee900c1a4c97924420b9ff18d6bdb
BLAKE2b-256 e1d7fedc921d61ab9a468e830861884df2a3aed434df81650e13637c9985cc41

See more details on using hashes here.

File details

Details for the file pyhepmc-2.7.1-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyhepmc-2.7.1-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 f9fabb4bbba1644d143e35f947dd585b64252d777305fed7ea45ac88f4a34430
MD5 bf4ef958bc536433fbc6c3e4c8f4649f
BLAKE2b-256 1de0e4c538d90bd891e46b18fb39154bd71deabf9dcbacb5bfeca47e64004a3c

See more details on using hashes here.

File details

Details for the file pyhepmc-2.7.1-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for pyhepmc-2.7.1-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 70f13999077bbc2d3fde0d10f4b2c62d9561458c139fe7e8d2394700250a1618
MD5 850b0e6f9fb2d634c92f6cf4c949fddc
BLAKE2b-256 21a9e317690bcecc471134b3b9ba952f1f5cd4285ceb32aba4455a3319019374

See more details on using hashes here.

File details

Details for the file pyhepmc-2.7.1-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: pyhepmc-2.7.1-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 443.1 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.14

File hashes

Hashes for pyhepmc-2.7.1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 acdc6d760a17c7c1be3cdd866750ba6b79f1a554770fcc8ff9cecab84a70bfed
MD5 ee15655cb89f2f38dbd4555f34991b42
BLAKE2b-256 8cc25525bd49bdfec4f3235bd3188d1c71633df827c751fbede4bc5b70ecf8a8

See more details on using hashes here.

File details

Details for the file pyhepmc-2.7.1-cp38-cp38-win32.whl.

File metadata

  • Download URL: pyhepmc-2.7.1-cp38-cp38-win32.whl
  • Upload date:
  • Size: 374.1 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.14

File hashes

Hashes for pyhepmc-2.7.1-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 29d53d47d5e0e13ee95fd8171fbd63175979f411b3d958c163bbef03f4f336bc
MD5 a826b6eb3801632fddbe8de2f3469cd6
BLAKE2b-256 d6a264b3b0b57adf895df74a1b5516a05245b2d49efb56bff23532d8bc916b87

See more details on using hashes here.

File details

Details for the file pyhepmc-2.7.1-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for pyhepmc-2.7.1-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 db5e902d7e96445e0fc8db47a3629bb84fb640cc49543b7c512d9a3f45caa2b9
MD5 eb51fd988732b2245894fc8dff9173ff
BLAKE2b-256 d234278bab9aeae5986bb52dfca85ddf4d6274af2408c903b318395e955be0ae

See more details on using hashes here.

File details

Details for the file pyhepmc-2.7.1-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for pyhepmc-2.7.1-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 b196e06dc11bc84811ff3aa64f26b135673f482147d743a4dd3bdea9119f0913
MD5 226a72fc82d1a20cc870bc6053e1714c
BLAKE2b-256 910d76d155c683390e365c41bbeb4c3c623e9e787997c4cec05b370c74ae24cb

See more details on using hashes here.

File details

Details for the file pyhepmc-2.7.1-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyhepmc-2.7.1-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 9ba074d2fe3af96e194585a995c9ec1b5e52a209493e54fbc6133736a9377a14
MD5 b6ce8694ee683ad42d218afe692f8d77
BLAKE2b-256 26ce9aa3e203ee1518a707a472de61a4527fa6dcc36dd73d062066875447706e

See more details on using hashes here.

File details

Details for the file pyhepmc-2.7.1-cp38-cp38-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for pyhepmc-2.7.1-cp38-cp38-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 9ba3795d12eaf72f4002dfce065ba6a91c7c8cf8d4208251bf6093266426eee0
MD5 d7d38dfabfadc2c4ada18064155a8f06
BLAKE2b-256 a1f4070011b93afc4cfdcfe46e36ab08c53f3aeeb2b73045669102eded2b64df

See more details on using hashes here.

File details

Details for the file pyhepmc-2.7.1-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: pyhepmc-2.7.1-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 440.7 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.14

File hashes

Hashes for pyhepmc-2.7.1-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 a8f78b4d660c19cc1754ca3308eebdf8499554f37ff15e11f60e58951609d024
MD5 a5ba3f698240c780ff34a569dfea78f0
BLAKE2b-256 8c70c9815276adbc0f834b467c3ef91ea264bb2bbc970bb3aea0265795488b02

See more details on using hashes here.

File details

Details for the file pyhepmc-2.7.1-cp37-cp37m-win32.whl.

File metadata

  • Download URL: pyhepmc-2.7.1-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 376.5 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.14

File hashes

Hashes for pyhepmc-2.7.1-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 dc44a4a2fabe1c2b453fa83ece537d85946c9fb3a3e4193d03bfef1c182ff521
MD5 606b3568326ee62c0981b73d44f03a9a
BLAKE2b-256 300719c9e811c9cbed2a74f5ddf6b31445fef12c818caf07f803e6b2e6978a8f

See more details on using hashes here.

File details

Details for the file pyhepmc-2.7.1-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for pyhepmc-2.7.1-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 62208f1cbc4078918b282f5b074a3b940810316ce61b9dd8493b5b1fdb0bb102
MD5 050e87d44d8e83c9f777c2e6bd0a308a
BLAKE2b-256 edc0ee5213175274cb8c2c1539672d51f1d702a8a98243765ffa088b1b533a63

See more details on using hashes here.

File details

Details for the file pyhepmc-2.7.1-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for pyhepmc-2.7.1-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 2174721ab1eb4771f02a72c1ca39385636eef781d3640286fa5cffa21d13139b
MD5 26705b1dcb8a04647e28ba6be3ec50f2
BLAKE2b-256 84952c6409c52067309f0a5f7776aaf7f89ce40ace09b0c91b0341060de829ec

See more details on using hashes here.

File details

Details for the file pyhepmc-2.7.1-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyhepmc-2.7.1-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ecd30fb8480d45059c6227d38f0496b940a4ba0bcbfac8ba76d751ce09711b35
MD5 4bdefd38a6f316fc2610246979755dfa
BLAKE2b-256 89444d3a0025bd30d26f6b3c84da4ff721cb3634310782abab2717d6958779b5

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page