Skip to main content

Pythonic interface to the HepMC3 C++ library licensed under LGPL-v3.

Project description

A Pythonic wrapper for the HepMC3 C++ library.

https://scikit-hep.org/assets/images/Scikit--HEP-Project-blue.svg https://badge.fury.io/py/pyhepmc.svg https://coveralls.io/repos/github/scikit-hep/pyhepmc/badge.svg?branch=main https://zenodo.org/badge/DOI/10.5281/zenodo.7013498.svg

pyhepmc was formerly known as pyhepmc-ng. The development of pyhepmc-ng continues in the pyhepmc package.

HepMC3 has its own Python bindings. Why should you use these?

pyhepmc is easy to install

The command pip install pyhepmc just works on all common platforms. Since we publish binary wheels, you don’t need to compile anything. Since we include the HepMC3 library, you don’t need to install it separately either.

However, building from source is also easy. External software is not required. Just download the repository with git clone --recursive and run pip install -v -e ..

pyhepmc is Pythonic and Jupyter notebook-friendly

pyhepmc is a hand-crafted mapping of C++ code to Python, see documentation for details. Python idioms are supported where appropriate. The classes are designed to render well in Jupyter notebooks. IO is simplified. Events can be visualized in Jupyter notebooks.

pyhepmc supports visualizations powered by graphviz

pyhepmc can optionally visualize events, using the mature graphviz library as a backend.

docs/_static/pyhepmc.svg

pyhepmc is actively maintained

pyhepmc is part of the Scikit-HEP project, which aims to provide all tools needed by particle physicists to do data analysis in Python. It is developed in close collaboration with the HepMC3 project.

pyhepmc is thoroughly unit tested

We have 100% coverage for the Python API.

Documentation

pyhepmc largely mirrors the C++ interface of the HepMC3 library, which is documented here. Parts of the documentation have been copied from HepMC3. Documentation is available as Python docstrings, so you can use Python’s help() browser to learn about the API. Alternatively, you can consult the online reference generated from these docstrings which includes some examples.

License

The pyhepmc code is covered by the BSD 3-clause license, but its main functionality comes from bundled software which is released under different licenses. The HepMC3 library is licensed under LGPL-v3 and bundles other software which is released under different licenses. See the files LICENSE and LICENSE_bundled in the source directory for details.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyhepmc-2.7.1b3.tar.gz (354.5 kB view details)

Uploaded Source

Built Distributions

pyhepmc-2.7.1b3-cp310-cp310-win_amd64.whl (443.3 kB view details)

Uploaded CPython 3.10 Windows x86-64

pyhepmc-2.7.1b3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (571.0 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

pyhepmc-2.7.1b3-cp310-cp310-macosx_10_9_x86_64.whl (511.9 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

pyhepmc-2.7.1b3-cp310-cp310-macosx_10_9_universal2.whl (942.0 kB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64)

pyhepmc-2.7.1b3-cp39-cp39-win_amd64.whl (443.2 kB view details)

Uploaded CPython 3.9 Windows x86-64

pyhepmc-2.7.1b3-cp39-cp39-win32.whl (374.3 kB view details)

Uploaded CPython 3.9 Windows x86

pyhepmc-2.7.1b3-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (516.5 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

pyhepmc-2.7.1b3-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl (533.2 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ i686

pyhepmc-2.7.1b3-cp39-cp39-macosx_10_9_x86_64.whl (512.0 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

pyhepmc-2.7.1b3-cp39-cp39-macosx_10_9_universal2.whl (942.3 kB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

pyhepmc-2.7.1b3-cp38-cp38-win_amd64.whl (443.1 kB view details)

Uploaded CPython 3.8 Windows x86-64

pyhepmc-2.7.1b3-cp38-cp38-win32.whl (374.1 kB view details)

Uploaded CPython 3.8 Windows x86

pyhepmc-2.7.1b3-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (515.9 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

pyhepmc-2.7.1b3-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl (533.0 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ i686

pyhepmc-2.7.1b3-cp38-cp38-macosx_10_9_x86_64.whl (512.0 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

pyhepmc-2.7.1b3-cp38-cp38-macosx_10_9_universal2.whl (942.3 kB view details)

Uploaded CPython 3.8 macOS 10.9+ universal2 (ARM64, x86-64)

pyhepmc-2.7.1b3-cp37-cp37m-win_amd64.whl (440.8 kB view details)

Uploaded CPython 3.7m Windows x86-64

pyhepmc-2.7.1b3-cp37-cp37m-win32.whl (376.5 kB view details)

Uploaded CPython 3.7m Windows x86

pyhepmc-2.7.1b3-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (519.1 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

pyhepmc-2.7.1b3-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl (541.0 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ i686

pyhepmc-2.7.1b3-cp37-cp37m-macosx_10_9_x86_64.whl (504.5 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file pyhepmc-2.7.1b3.tar.gz.

File metadata

  • Download URL: pyhepmc-2.7.1b3.tar.gz
  • Upload date:
  • Size: 354.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.14

File hashes

Hashes for pyhepmc-2.7.1b3.tar.gz
Algorithm Hash digest
SHA256 3514dc948182eda0dfeb8f3e7782bdfb7e624bb8568fbf57e0cdcdfa063a5692
MD5 8fe0746a17ee1f77d30b576b58780cf1
BLAKE2b-256 26fb723eb1e790a5667f13d3d234df4590954973c2dcc92b1ecbcf44317980c9

See more details on using hashes here.

File details

Details for the file pyhepmc-2.7.1b3-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for pyhepmc-2.7.1b3-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 203d4794a59ecff9938f3b1f4ec1a25d18dd91b9e474de9f23aaad12674addb4
MD5 49f97fe1e9bfbd117317a6e3d0d0854a
BLAKE2b-256 96c7389f86cf27998f6bdbd8c9d47c5719a40ace9e7d58567a8a6eeeda4b4e4d

See more details on using hashes here.

File details

Details for the file pyhepmc-2.7.1b3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyhepmc-2.7.1b3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7b20bfa8399dd77b3712eb0414a979ae72bddbb84f9c0a4de2f6a821cafa719d
MD5 4bccfedc717039aa4d57b610b0afe728
BLAKE2b-256 c8bc9065b17a3db929482db0af1f6d3158e2374ba255157f5ad36ab038072b9b

See more details on using hashes here.

File details

Details for the file pyhepmc-2.7.1b3-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyhepmc-2.7.1b3-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 749b353ad6010785d7fe4000698943bf43e34405c1aa80c5fafc1e64ca4df38c
MD5 b55eab634fef07eeeb26cd515c1c7aff
BLAKE2b-256 34fd1c51d296de304e0b037b07ccb7f48e3927082d099db2951e53cb1edb8f97

See more details on using hashes here.

File details

Details for the file pyhepmc-2.7.1b3-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for pyhepmc-2.7.1b3-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 73f199cfd211afaad128193df1670e1c4172caf40eec986167a0821e4bdd0f52
MD5 cfe173b97c36b112786bfb9c715609a3
BLAKE2b-256 dce24de5a35a2c8931e79be58fea9ee8314c423b137af9ff7747da893208780b

See more details on using hashes here.

File details

Details for the file pyhepmc-2.7.1b3-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: pyhepmc-2.7.1b3-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 443.2 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.14

File hashes

Hashes for pyhepmc-2.7.1b3-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 fc8e8d9fd56ea2b0de3baaa454953081dae9e3d57ecbfb7aa238671eadfff9f4
MD5 38299110d476c8bcee2c6406ef3aaf01
BLAKE2b-256 4f716e6a4adfac2fc5db86301f76ee40e0beffb008296147017d04acf820c11e

See more details on using hashes here.

File details

Details for the file pyhepmc-2.7.1b3-cp39-cp39-win32.whl.

File metadata

  • Download URL: pyhepmc-2.7.1b3-cp39-cp39-win32.whl
  • Upload date:
  • Size: 374.3 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.14

File hashes

Hashes for pyhepmc-2.7.1b3-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 3c8511ac70320929da803de9d804a00cf7e331ee83db241a4cffa67a991eba08
MD5 f73bc4c9b8dd608f8938d25eded3803d
BLAKE2b-256 def3f64c0802b50425ced4f08c33e51154576325bd7b66aaafd66cbc91212d82

See more details on using hashes here.

File details

Details for the file pyhepmc-2.7.1b3-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for pyhepmc-2.7.1b3-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 678b9afb609fd958311bbf1ea08f5b92db9b39ece48acd58379300f8de638bbf
MD5 994181429eb824e4f926ba3147c8877f
BLAKE2b-256 85a5cd90845a514aaa8b37a6aea7f4e7973516704a4085e46c795b7ed4d82ac0

See more details on using hashes here.

File details

Details for the file pyhepmc-2.7.1b3-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for pyhepmc-2.7.1b3-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 4feaf5da5770c1dfda160bb57ed30e9490469e2bf99066445782f9adeaa61ec7
MD5 55fc6dbdacf9ce3f59c396c1c5c5d22c
BLAKE2b-256 f61e44d4c9bdbb7066029b619138e5eb5eb46b93226964f5cf31785d69917ff0

See more details on using hashes here.

File details

Details for the file pyhepmc-2.7.1b3-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyhepmc-2.7.1b3-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 6a626b82c9bf2b5de1deae27f474def7b4f64bdbb48ea7887a3b1b5234f7c293
MD5 c3ab22a33e630861b7596468a8ed06ae
BLAKE2b-256 9d6545b6f5deca36e8d8e655f5a1fa908d2a68242480a041e96fd455f5c2adb1

See more details on using hashes here.

File details

Details for the file pyhepmc-2.7.1b3-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for pyhepmc-2.7.1b3-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 07a5bda2c6336229e8a24bac273d3fcac1b5d383d8666e935d363f3968930472
MD5 0ef776abdd5844c22578080b31e2aa0a
BLAKE2b-256 2f7737c4eed06f51d977037b8805bcdad3b2dcac84459522f886ce2845beb3bf

See more details on using hashes here.

File details

Details for the file pyhepmc-2.7.1b3-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: pyhepmc-2.7.1b3-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 443.1 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.14

File hashes

Hashes for pyhepmc-2.7.1b3-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 316bb218d5fe4a6b3526a05a2f0c096996f2b4633cfcdcdb27e4a3c3e5acea53
MD5 3695c2c9f7dbdb48d832de11eff1d366
BLAKE2b-256 64eb0f6985d2322e8168f99ec8e7f870b4ea3716e2572075a81458df87173886

See more details on using hashes here.

File details

Details for the file pyhepmc-2.7.1b3-cp38-cp38-win32.whl.

File metadata

  • Download URL: pyhepmc-2.7.1b3-cp38-cp38-win32.whl
  • Upload date:
  • Size: 374.1 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.14

File hashes

Hashes for pyhepmc-2.7.1b3-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 bdd2280ab78cda43f8a21edd6213dded3d3529ee0112279e8aaf61fc51e665eb
MD5 8921886a1991259dd94f7e23d6819267
BLAKE2b-256 5a8699019fba6fa8cf811faee4b6dcd6d9499c2997dbd3bcd214458d31c88355

See more details on using hashes here.

File details

Details for the file pyhepmc-2.7.1b3-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for pyhepmc-2.7.1b3-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 a1cda5f320cf887c1d76e39f924800994899c7bf67856f7dde4587d75aac9282
MD5 fea357c8115573c5f914150a0627a743
BLAKE2b-256 32cf6cd1fd8b0d8dfcefc9abc590010d3cdc1db201212ed0285c0d3f98c101c2

See more details on using hashes here.

File details

Details for the file pyhepmc-2.7.1b3-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for pyhepmc-2.7.1b3-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 8f53b342166b22d582d130123f40873cbce76c09f6d44ff8fa03c32e0c037382
MD5 08952e36db56cf76b041ed07b5c2b6e8
BLAKE2b-256 a9c03b741020dcffef78bf24336bbde35d8f96382d562646f5a0f1d187cab62b

See more details on using hashes here.

File details

Details for the file pyhepmc-2.7.1b3-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyhepmc-2.7.1b3-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 cb04868aad3abe3be481feeb1aa0a3455a139660834ec79c8c878e6cad77e351
MD5 e0b64b2481f4da2fbf490668ba519ab3
BLAKE2b-256 0b3d201d6f44ffdab03726193aa37798dafb08017e9d534b6bdced03b15b6470

See more details on using hashes here.

File details

Details for the file pyhepmc-2.7.1b3-cp38-cp38-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for pyhepmc-2.7.1b3-cp38-cp38-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 12b19999bfa3a5d7a78ebcebf9b789fdcbebd37323f41bb5262d52a4e88dcb7d
MD5 30841f7e1fc572a879933c76660219c4
BLAKE2b-256 84260ac5dca4e9f46e8924ee2730c3576777d00b5d57fa9dcfbc4b907f51b714

See more details on using hashes here.

File details

Details for the file pyhepmc-2.7.1b3-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: pyhepmc-2.7.1b3-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 440.8 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.14

File hashes

Hashes for pyhepmc-2.7.1b3-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 97ec6ee527688c440d653e59c8bf3b994d0432ff8742932b963ff33cc1d5735a
MD5 7f5773fb2c40f39c0db66f01e4d3e8ae
BLAKE2b-256 c6939a597ea94c42a9ad110da13b9aa15052af50d0e5b4d716bf8997a629289e

See more details on using hashes here.

File details

Details for the file pyhepmc-2.7.1b3-cp37-cp37m-win32.whl.

File metadata

  • Download URL: pyhepmc-2.7.1b3-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 376.5 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.14

File hashes

Hashes for pyhepmc-2.7.1b3-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 222b0c727c262f8d0cab339c1ad9055478c4b73532e94dde3962d3aa94e3ead4
MD5 43ad15ec269ebd76cefea72539346255
BLAKE2b-256 7e2d6da2fc1a3b87ceea4bffe5c486caf27d080c51149208eb2fdf229892c850

See more details on using hashes here.

File details

Details for the file pyhepmc-2.7.1b3-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for pyhepmc-2.7.1b3-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 768b3dfa48ab99f4d1072584e5ec1ec61acdafb62322b3b2f2c87dfba0126ec1
MD5 b358a494153319561c5fe3e35bf2d3c0
BLAKE2b-256 540a66a02755e4a6ae12ad3eff54c78d60de8c0815d613e3cc07fae6e66f1cfd

See more details on using hashes here.

File details

Details for the file pyhepmc-2.7.1b3-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for pyhepmc-2.7.1b3-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 52618c610817fb86c8882f724d13e5f6a2f89c753b3484b5ed3571eb90534a81
MD5 b3bb0213dbbfda44bc27fb5e9284630e
BLAKE2b-256 3a569bd7dfa998443a27dc48d11109f8d856349569d93357e07a96b296dd2ce7

See more details on using hashes here.

File details

Details for the file pyhepmc-2.7.1b3-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyhepmc-2.7.1b3-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 3e6302dd0c21cfccd05edb5cbd758dd01ec4930f64201d5e4fb89fa9a5701275
MD5 bad1a00cc14f212423d183def19eaac6
BLAKE2b-256 136dcaabeca3713d51b368a3795fdf8cdbe0d5e94302229b339528572f54deb8

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page