Skip to main content

Pythonic interface to the HepMC3 C++ library licensed under LGPL-v3.

Project description

A Pythonic wrapper for the HepMC3 C++ library.

https://scikit-hep.org/assets/images/Scikit--HEP-Project-blue.svg https://badge.fury.io/py/pyhepmc.svg https://coveralls.io/repos/github/scikit-hep/pyhepmc/badge.svg?branch=main https://zenodo.org/badge/DOI/10.5281/zenodo.7013498.svg

pyhepmc was formerly known as pyhepmc-ng. The development of pyhepmc-ng continues in the pyhepmc package.

HepMC3 has its own Python bindings. Why should you use these?

pyhepmc is easy to install

The command pip install pyhepmc just works on all common platforms. Since we publish binary wheels, you don’t need to compile anything. Since we include the HepMC3 library, you don’t need to install it separately either.

However, building from source is also easy. External software is not required. Just download the repository with git clone --recursive and run pip install -v -e ..

pyhepmc is Pythonic and Jupyter notebook-friendly

pyhepmc is a hand-crafted mapping of C++ code to Python, see documentation for details. Python idioms are supported where appropriate. The classes are designed to render well in Jupyter notebooks. IO is simplified. Events can be visualized in Jupyter notebooks.

pyhepmc supports visualizations powered by graphviz

pyhepmc can optionally visualize events, using the mature graphviz library as a backend.

docs/_static/pyhepmc.svg

pyhepmc is actively maintained

pyhepmc is part of the Scikit-HEP project, which aims to provide all tools needed by particle physicists to do data analysis in Python. It is developed in close collaboration with the HepMC3 project.

pyhepmc is thoroughly unit tested

We have 100% coverage for the Python API.

Documentation

pyhepmc largely mirrors the C++ interface of the HepMC3 library, which is documented here. Parts of the documentation have been copied from HepMC3. Documentation is available as Python docstrings, so you can use Python’s help() browser to learn about the API. Alternatively, you can consult the online reference generated from these docstrings which includes some examples.

License

The pyhepmc code is covered by the BSD 3-clause license, but its main functionality comes from bundled software which is released under different licenses. The HepMC3 library is licensed under LGPL-v3 and bundles other software which is released under different licenses. See the files LICENSE and LICENSE_bundled in the source directory for details.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyhepmc-2.7.2.tar.gz (354.6 kB view details)

Uploaded Source

Built Distributions

pyhepmc-2.7.2-cp310-cp310-win_amd64.whl (443.4 kB view details)

Uploaded CPython 3.10 Windows x86-64

pyhepmc-2.7.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (571.8 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

pyhepmc-2.7.2-cp310-cp310-macosx_10_9_x86_64.whl (512.6 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

pyhepmc-2.7.2-cp310-cp310-macosx_10_9_universal2.whl (943.3 kB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64)

pyhepmc-2.7.2-cp39-cp39-win_amd64.whl (443.5 kB view details)

Uploaded CPython 3.9 Windows x86-64

pyhepmc-2.7.2-cp39-cp39-win32.whl (374.5 kB view details)

Uploaded CPython 3.9 Windows x86

pyhepmc-2.7.2-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (517.0 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

pyhepmc-2.7.2-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl (533.6 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ i686

pyhepmc-2.7.2-cp39-cp39-macosx_10_9_x86_64.whl (512.7 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

pyhepmc-2.7.2-cp39-cp39-macosx_10_9_universal2.whl (943.5 kB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

pyhepmc-2.7.2-cp38-cp38-win_amd64.whl (443.2 kB view details)

Uploaded CPython 3.8 Windows x86-64

pyhepmc-2.7.2-cp38-cp38-win32.whl (374.5 kB view details)

Uploaded CPython 3.8 Windows x86

pyhepmc-2.7.2-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (516.4 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

pyhepmc-2.7.2-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl (533.2 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ i686

pyhepmc-2.7.2-cp38-cp38-macosx_10_9_x86_64.whl (512.6 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

pyhepmc-2.7.2-cp38-cp38-macosx_10_9_universal2.whl (943.3 kB view details)

Uploaded CPython 3.8 macOS 10.9+ universal2 (ARM64, x86-64)

pyhepmc-2.7.2-cp37-cp37m-win_amd64.whl (441.1 kB view details)

Uploaded CPython 3.7m Windows x86-64

pyhepmc-2.7.2-cp37-cp37m-win32.whl (377.0 kB view details)

Uploaded CPython 3.7m Windows x86

pyhepmc-2.7.2-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (519.7 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

pyhepmc-2.7.2-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl (541.1 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ i686

pyhepmc-2.7.2-cp37-cp37m-macosx_10_9_x86_64.whl (505.2 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file pyhepmc-2.7.2.tar.gz.

File metadata

  • Download URL: pyhepmc-2.7.2.tar.gz
  • Upload date:
  • Size: 354.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.14

File hashes

Hashes for pyhepmc-2.7.2.tar.gz
Algorithm Hash digest
SHA256 dbab22636600de3b4da8f649cfa2cf87b5987e9c9effa5683e84510cf3608cca
MD5 7af0a215be573d22ae34a97b32578cf9
BLAKE2b-256 b8aff8c2fdfc2ed6c7aebb8b429ff85928d8772dc69a601c8c4c7f98d2a51e8b

See more details on using hashes here.

File details

Details for the file pyhepmc-2.7.2-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: pyhepmc-2.7.2-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 443.4 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.14

File hashes

Hashes for pyhepmc-2.7.2-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 90d0fa6f3d1bd9378d7d92d62469fc71e18e9c0123bdff29ec721e7e9210fb61
MD5 aff99d87bb7f62c86d8d48a8b809fb02
BLAKE2b-256 a87ecf7c4f9485fb7c1c88fb86845c4354641731ea9586531140f54ffffc8eb6

See more details on using hashes here.

File details

Details for the file pyhepmc-2.7.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyhepmc-2.7.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 38bdc11559b2674b295e7d7e0497d8217be49cb0963458ff1422095d5dc508a0
MD5 7064d4e97b5c44a63a90dd28cf7cfce0
BLAKE2b-256 fab0b3c0d6fd8dd3daff20ece4b84ac135ed3c247ce9f0203a7d3f637f349adf

See more details on using hashes here.

File details

Details for the file pyhepmc-2.7.2-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyhepmc-2.7.2-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 91612fb472c15fac58aa75fc4fc7a0c4b479dbd3222913418ee69be12ca5fc47
MD5 76d60568c20de74563be04466d48407a
BLAKE2b-256 e212c52af8db70f1b11c2a8093ada8afbde2700e505ac890947730410e74443a

See more details on using hashes here.

File details

Details for the file pyhepmc-2.7.2-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for pyhepmc-2.7.2-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 365434150013a9d00de28af2082944d71736ac679a929c6dd7dc5f17f6951e78
MD5 39697c34d98c18e4418558cc85d59b0b
BLAKE2b-256 7fa7acfedeeb4b6f46edfc65dfec0aaafd5c3258a257d4125caf14e73e6c0cc4

See more details on using hashes here.

File details

Details for the file pyhepmc-2.7.2-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: pyhepmc-2.7.2-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 443.5 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.14

File hashes

Hashes for pyhepmc-2.7.2-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 3ce52b801645fd503e5ac68bc4b45affacadba2f6939762b2f602efaa3fdb16c
MD5 13b9c87bd49372c125918c1fc1480ef7
BLAKE2b-256 0026204d56934b6da166652ab8d2c876b155987bee522ed749047c4fdb920219

See more details on using hashes here.

File details

Details for the file pyhepmc-2.7.2-cp39-cp39-win32.whl.

File metadata

  • Download URL: pyhepmc-2.7.2-cp39-cp39-win32.whl
  • Upload date:
  • Size: 374.5 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.14

File hashes

Hashes for pyhepmc-2.7.2-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 771b00a351b965086135c5f67c5d3f7d676ff8f99df0c216834aaff681a4be44
MD5 b78a61100ae60db70c4a572c694c5b61
BLAKE2b-256 7bdf55de22c1126a772150cf38c096f6e57756ed72fcce6e282ed1446b90e968

See more details on using hashes here.

File details

Details for the file pyhepmc-2.7.2-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for pyhepmc-2.7.2-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 7e07437653bf393892d1879f82e6e4bc97b8bb9a585ba5bb9c81a9fbb139ef62
MD5 13b230f1bfd2ede63e166ae7add99d6e
BLAKE2b-256 9e042527edfd94b070777461218d3537d8d59f1fbf478946eae747febdce8049

See more details on using hashes here.

File details

Details for the file pyhepmc-2.7.2-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for pyhepmc-2.7.2-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 b6807306cd9602294696245c881ddb27294091cbdb66a0bc42e8d66b2f792f07
MD5 ea0cc4ac28f52eb79527f1d65a51eb79
BLAKE2b-256 d1784857a2e361d6d3e8284d5d407f2c65b1330b054ff6ca3a673e02b88e69a5

See more details on using hashes here.

File details

Details for the file pyhepmc-2.7.2-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyhepmc-2.7.2-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 7f2926132892df59ab3ac0b982fb1605a792732679cc44827bcd525a4a57090a
MD5 ad929c90202303c8f3af197610642d05
BLAKE2b-256 0101e4d9827bcab3efca0465d86c1303aebf16db30fa5dd33628c68398f845ac

See more details on using hashes here.

File details

Details for the file pyhepmc-2.7.2-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for pyhepmc-2.7.2-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 2066806de7bd82111959124ba7f4ad0639d2dfc16d1995708c417d54ee1eeec6
MD5 f7c822e2303f7ce63254ba7cb8371f10
BLAKE2b-256 8711c23072ec58d886d01225eb664acfc29d6712ea4d9f2a1d16f590e78b2627

See more details on using hashes here.

File details

Details for the file pyhepmc-2.7.2-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: pyhepmc-2.7.2-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 443.2 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.14

File hashes

Hashes for pyhepmc-2.7.2-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 9ea0d36ebf4c31d5a2aa502237a6088961c7f5915159e0866f5b68fb4f1feb3f
MD5 4b5b192bcf8a35355d8cfaab92b494f6
BLAKE2b-256 4fe56a69d5247f0aa8cbd15c6eb6c5539efe1b6c881b9d2e3c5ea278fa1f8890

See more details on using hashes here.

File details

Details for the file pyhepmc-2.7.2-cp38-cp38-win32.whl.

File metadata

  • Download URL: pyhepmc-2.7.2-cp38-cp38-win32.whl
  • Upload date:
  • Size: 374.5 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.14

File hashes

Hashes for pyhepmc-2.7.2-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 40fd2baa9c5e696fb1eb04ac377876b47b18084036f356a67da1aac2b8cb7588
MD5 bc01a345d9b20c63195b67a0614e6d8e
BLAKE2b-256 d961e5456738cba5a875cb499f7ebfddae374925167e2e7e50f4b269d8ff9062

See more details on using hashes here.

File details

Details for the file pyhepmc-2.7.2-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for pyhepmc-2.7.2-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 e3c717261decf2009e5acbbd66060ad1e5e757de77b51eaa36b74caa391064f9
MD5 80ecfc9fe5bbcef10c24e5ae8d82321a
BLAKE2b-256 511e8bccb42840d89c3abd93f9126dc107255abbd31324ba4ddfefbc41611e7d

See more details on using hashes here.

File details

Details for the file pyhepmc-2.7.2-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for pyhepmc-2.7.2-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 4e943095f32ad3f16c6958d888bbb2b39d896464a0bbe93fc36ac3d2784d24a4
MD5 130e61dace203a30edab85fdeed8d7f3
BLAKE2b-256 3303e676cee540c95ee8925a1762a0f1650f053eea2c54063f33aef5a37e33ba

See more details on using hashes here.

File details

Details for the file pyhepmc-2.7.2-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyhepmc-2.7.2-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 f4f0e9df8212d3f5025a71b8a3b94c6a0551fa9d2ac78496734515f6c1a23187
MD5 88f2e3a47851373f9f67be97234bbf4f
BLAKE2b-256 8e4b62d64dbb4e210a641d492dc30e3ad0a35652a53d3661cf18f9881c6c0cc4

See more details on using hashes here.

File details

Details for the file pyhepmc-2.7.2-cp38-cp38-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for pyhepmc-2.7.2-cp38-cp38-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 92282fcd31dfb0bd13e0fa4933f922541ee74f99118f1adf8b00b2b3442bfacc
MD5 9efeda8d9e9541529ca357e17ac75baf
BLAKE2b-256 d4e0c498794e8e375a001fa16fc9475cba07d33d28b6c69cc552a5000302a690

See more details on using hashes here.

File details

Details for the file pyhepmc-2.7.2-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: pyhepmc-2.7.2-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 441.1 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.14

File hashes

Hashes for pyhepmc-2.7.2-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 213fae86d3f50a033d26cf3959d50bfb2b9b6be91220054d10de33aa011030c5
MD5 222d445b692b6b5620059b897e03b5ba
BLAKE2b-256 e3f659097263746278f0be206c067761f95da077b5d09ce685bd18f3f1d38c66

See more details on using hashes here.

File details

Details for the file pyhepmc-2.7.2-cp37-cp37m-win32.whl.

File metadata

  • Download URL: pyhepmc-2.7.2-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 377.0 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.14

File hashes

Hashes for pyhepmc-2.7.2-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 4914f8f24a17cc85f61320085664e04327f1143b3a651d5d49f538b92fb61629
MD5 953c976c44bf3cd666e60760ee95555e
BLAKE2b-256 74d3041393633ae0705f9177e75aa1c89ec7f0d55c399e13522aed91b00dcf00

See more details on using hashes here.

File details

Details for the file pyhepmc-2.7.2-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for pyhepmc-2.7.2-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 4ff8d920e6d213aa9cea211f3000a73dcc9c3c6e27afc744a0ebee4cae67c0e1
MD5 b20ca466f42e8d8d21c754de99a97eff
BLAKE2b-256 a664be59125ebcc7d918956d74bc7637ac3fb0ef6bfcaeada0916af7828f3084

See more details on using hashes here.

File details

Details for the file pyhepmc-2.7.2-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for pyhepmc-2.7.2-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 4637d4ae66f5010abfc43b0d1c408141a8352bf354d20de89505ca33071ef221
MD5 40217ce2384ca7b4b4c556264fdbcde5
BLAKE2b-256 2c9adc730f77ccde831e16c6a238b8a736c7a8f5aea5e981d3820efa2d05c5c4

See more details on using hashes here.

File details

Details for the file pyhepmc-2.7.2-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyhepmc-2.7.2-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 719a32b8b5d3756594a2c2af302ff68acf50b7eb3cfbfaa548eec0d6fd77e452
MD5 c6254aaa3641cabbfef041b9e89dd701
BLAKE2b-256 0c033347e915403a70d5593896051e2f104a2d4471049294673ee6cfe8c21fff

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page