Skip to main content

Pythonic interface to the HepMC3 C++ library licensed under LGPL-v3.

Project description

A Pythonic wrapper for the HepMC3 C++ library.

https://scikit-hep.org/assets/images/Scikit--HEP-Project-blue.svg https://badge.fury.io/py/pyhepmc.svg https://coveralls.io/repos/github/scikit-hep/pyhepmc/badge.svg?branch=main https://zenodo.org/badge/DOI/10.5281/zenodo.7013498.svg

pyhepmc was formerly known as pyhepmc-ng. The development of pyhepmc-ng continues in the pyhepmc package.

HepMC3 has its own Python bindings. Why should you use these?

pyhepmc is easy to install

The command pip install pyhepmc just works on all common platforms. Since we publish binary wheels, you don’t need to compile anything. Since we include the HepMC3 library, you don’t need to install it separately either.

However, building from source is also easy. External software is not required. Just download the repository with git clone --recursive and run pip install -v -e ..

pyhepmc is Pythonic and Jupyter notebook-friendly

pyhepmc is a hand-crafted mapping of C++ code to Python, see documentation for details. Python idioms are supported where appropriate. The classes are designed to render well in Jupyter notebooks. IO is simplified. Events can be visualized in Jupyter notebooks.

pyhepmc supports visualizations powered by graphviz

pyhepmc can optionally visualize events, using the mature graphviz library as a backend.

docs/_static/pyhepmc.svg

pyhepmc is actively maintained

pyhepmc is part of the Scikit-HEP project, which aims to provide all tools needed by particle physicists to do data analysis in Python. It is developed in close collaboration with the HepMC3 project.

pyhepmc is thoroughly unit tested

We have 100% coverage for the Python API.

Documentation

pyhepmc largely mirrors the C++ interface of the HepMC3 library, which is documented here. Parts of the documentation have been copied from HepMC3. Documentation is available as Python docstrings, so you can use Python’s help() browser to learn about the API. Alternatively, you can consult the online reference generated from these docstrings which includes some examples.

License

The pyhepmc code is covered by the BSD 3-clause license, but its main functionality comes from bundled software which is released under different licenses. The HepMC3 library is licensed under LGPL-v3 and bundles other software which is released under different licenses. See the files LICENSE and LICENSE_bundled in the source directory for details.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyhepmc-2.7.3.tar.gz (356.0 kB view details)

Uploaded Source

Built Distributions

pyhepmc-2.7.3-cp310-cp310-win_amd64.whl (448.5 kB view details)

Uploaded CPython 3.10 Windows x86-64

pyhepmc-2.7.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (579.2 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

pyhepmc-2.7.3-cp310-cp310-macosx_10_9_x86_64.whl (520.8 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

pyhepmc-2.7.3-cp310-cp310-macosx_10_9_universal2.whl (957.6 kB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64)

pyhepmc-2.7.3-cp39-cp39-win_amd64.whl (448.6 kB view details)

Uploaded CPython 3.9 Windows x86-64

pyhepmc-2.7.3-cp39-cp39-win32.whl (379.5 kB view details)

Uploaded CPython 3.9 Windows x86

pyhepmc-2.7.3-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (523.3 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

pyhepmc-2.7.3-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl (540.8 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ i686

pyhepmc-2.7.3-cp39-cp39-macosx_10_9_x86_64.whl (520.9 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

pyhepmc-2.7.3-cp39-cp39-macosx_10_9_universal2.whl (957.7 kB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

pyhepmc-2.7.3-cp38-cp38-win_amd64.whl (448.3 kB view details)

Uploaded CPython 3.8 Windows x86-64

pyhepmc-2.7.3-cp38-cp38-win32.whl (379.4 kB view details)

Uploaded CPython 3.8 Windows x86

pyhepmc-2.7.3-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (523.0 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

pyhepmc-2.7.3-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl (540.5 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ i686

pyhepmc-2.7.3-cp38-cp38-macosx_10_9_x86_64.whl (520.6 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

pyhepmc-2.7.3-cp38-cp38-macosx_10_9_universal2.whl (957.5 kB view details)

Uploaded CPython 3.8 macOS 10.9+ universal2 (ARM64, x86-64)

pyhepmc-2.7.3-cp37-cp37m-win_amd64.whl (445.9 kB view details)

Uploaded CPython 3.7m Windows x86-64

pyhepmc-2.7.3-cp37-cp37m-win32.whl (381.4 kB view details)

Uploaded CPython 3.7m Windows x86

pyhepmc-2.7.3-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (526.6 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

pyhepmc-2.7.3-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl (547.9 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ i686

pyhepmc-2.7.3-cp37-cp37m-macosx_10_9_x86_64.whl (512.4 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file pyhepmc-2.7.3.tar.gz.

File metadata

  • Download URL: pyhepmc-2.7.3.tar.gz
  • Upload date:
  • Size: 356.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.14

File hashes

Hashes for pyhepmc-2.7.3.tar.gz
Algorithm Hash digest
SHA256 b4ce70c3117e6d0ac15b70331ebfad933a88dc4d3f9fcc81609ee5cf0eff9bae
MD5 11053c5748e92887541ac37b97417e70
BLAKE2b-256 919ee51d099a45d516888a7b16a3bc97177c5c3de80a173a1bc8ab4b061feaeb

See more details on using hashes here.

File details

Details for the file pyhepmc-2.7.3-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: pyhepmc-2.7.3-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 448.5 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.14

File hashes

Hashes for pyhepmc-2.7.3-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 e5a5931d4da8f73345d558a6d3e3520a335bc74368d21516259b8afee82bc071
MD5 fe5741e9ddeaf2eab159893482ff30ea
BLAKE2b-256 417efe97e8844a2265101baf40b561658ff1775bbf99afde2e2e19d9f5876f58

See more details on using hashes here.

File details

Details for the file pyhepmc-2.7.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyhepmc-2.7.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2cab28aac7c2d7d9e784368efa5fc8f04521402d980ce9e4fcbd35f559f8f968
MD5 46a8e3db01f86baf9043569553f11a39
BLAKE2b-256 84d4c9a916972bfa1253d431a31edb6605954ec55bd6fd86a8d31eb333e99586

See more details on using hashes here.

File details

Details for the file pyhepmc-2.7.3-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyhepmc-2.7.3-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 dd7e535bc5e27974845d3e5c5b933447c8ec02e08bc3e562274602b90e07ceca
MD5 90bb2b08a690acc9312386b3e9dbf586
BLAKE2b-256 66ce53afc55aa2d1a139d401248f3dcfedca8200024c214cb11ca29c50d7c0dc

See more details on using hashes here.

File details

Details for the file pyhepmc-2.7.3-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for pyhepmc-2.7.3-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 18194d2df652100c4b8142af4a010a74411e7f44515b980b6839298289d84061
MD5 30ab68b8b7422a0c355ee4a0f12e8608
BLAKE2b-256 b4afe28c4d2b78ea0561d7388f4adb2066e8b3ea5af62f91c7befee514157f0c

See more details on using hashes here.

File details

Details for the file pyhepmc-2.7.3-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: pyhepmc-2.7.3-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 448.6 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.14

File hashes

Hashes for pyhepmc-2.7.3-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 77501b006e6310e519a9e5298f9177aeef41f69e91362d05c78f97f82171e3b1
MD5 fb040e3b93bb8a950eb4bbd60e08247f
BLAKE2b-256 4e14d48f010683cd5646f0201e410e61851e37b90aaa5872726ba706f7556a19

See more details on using hashes here.

File details

Details for the file pyhepmc-2.7.3-cp39-cp39-win32.whl.

File metadata

  • Download URL: pyhepmc-2.7.3-cp39-cp39-win32.whl
  • Upload date:
  • Size: 379.5 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.14

File hashes

Hashes for pyhepmc-2.7.3-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 ae237c1015b5f922ccf81186e3cc2832deb771a0ac474f34eaa402b21d593c46
MD5 37f7b29fa1324c1e7f34c7bac32302d1
BLAKE2b-256 74540dcecff100b1662c50713481ea3b0e16c746984dbc1ccdc2aa8671a05406

See more details on using hashes here.

File details

Details for the file pyhepmc-2.7.3-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for pyhepmc-2.7.3-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 7cdb4addcffd075061b5ad3f51b42c74ac16f88249c55c53717534541348ae05
MD5 0a085758ad83965ded0921bcac9be06d
BLAKE2b-256 0b763588a64733ec1dd81bfffa93df37d5f899d80cc0292f98f9e64af6965b40

See more details on using hashes here.

File details

Details for the file pyhepmc-2.7.3-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for pyhepmc-2.7.3-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 bf1ccb38f4fc6aa14d6b566f59cda3e945c25c2c3d8b4924ad24035b9c8621ce
MD5 8aae0339407efeddd5fc96191f4c9dba
BLAKE2b-256 c9db5eefad8223134f92afdc6cd1d4f4c5b0e0a12517a2e7d8a0e5191d8e3c46

See more details on using hashes here.

File details

Details for the file pyhepmc-2.7.3-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyhepmc-2.7.3-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 d8bab421356ff3f21eeef586695c8dca35c3706c472697e041f5ddd0039e31bd
MD5 4830e5c2f74ae9896e70d181b203fcbd
BLAKE2b-256 59dc51d4b9a1c43a743cdd789094b38dd452e97aaceab90152c04aa2d15b299f

See more details on using hashes here.

File details

Details for the file pyhepmc-2.7.3-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for pyhepmc-2.7.3-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 dc82eb722280561f51810e933f1f0e38a9bced28d9efddbafab1b3782206f461
MD5 bb8d4bdab047ce685184617894b151e8
BLAKE2b-256 c6f2c0170378c1f9c44a5e757dac94003980da84aa90e60eac271d52b72131a5

See more details on using hashes here.

File details

Details for the file pyhepmc-2.7.3-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: pyhepmc-2.7.3-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 448.3 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.14

File hashes

Hashes for pyhepmc-2.7.3-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 38f56bdbec394e9cb99520154a4af89372384232800b938edb6e41de9b2f21e7
MD5 a38196c322bfc950f715de35fb674c5e
BLAKE2b-256 d572dfcd69e640b4357cfbea1c9129213b021a7831e33b62c17fddd74e0c6bfa

See more details on using hashes here.

File details

Details for the file pyhepmc-2.7.3-cp38-cp38-win32.whl.

File metadata

  • Download URL: pyhepmc-2.7.3-cp38-cp38-win32.whl
  • Upload date:
  • Size: 379.4 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.14

File hashes

Hashes for pyhepmc-2.7.3-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 97a1500c932aa12be35bece7b35aa288f35a4a416d9adb9c2c0c329a58265320
MD5 abd7e32caaa08ce1d334a28d046748a9
BLAKE2b-256 9d3eaff335d6a19fe30ff5ae735e5770e95599f2b0ab54f595db9d9d7ce628ad

See more details on using hashes here.

File details

Details for the file pyhepmc-2.7.3-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for pyhepmc-2.7.3-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 98d2e631e0a5176262d0c9d0a31d9e83e588edbed21275e183d8dda5afdb9158
MD5 55f0a9b0ee5090556cee9819dbc59a44
BLAKE2b-256 950a5b271f86c36de64390e4b6a9451207407f10967936bd0aa10d63d8839376

See more details on using hashes here.

File details

Details for the file pyhepmc-2.7.3-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for pyhepmc-2.7.3-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 cb8bb63534a648e64dbb2a542d03db5e5ba7dbf1ae808e63be36d0d35638962e
MD5 cafd3986676399e56d5a0b3ac22cc472
BLAKE2b-256 0dd13f33ec957bda099ada596d8ffa34366d0b61fd8ec55e77a9b4342f3b8011

See more details on using hashes here.

File details

Details for the file pyhepmc-2.7.3-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyhepmc-2.7.3-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ccc7ad80dde0e485952999f5fce72ffc2f0c521b96cc5d4ad044ec9ffb56029b
MD5 0f2d99311620af98cdc473ce6ac25226
BLAKE2b-256 22b06929e82c29869489cd8b068752cc7f84f3c95f544913ce855596e7dc06d2

See more details on using hashes here.

File details

Details for the file pyhepmc-2.7.3-cp38-cp38-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for pyhepmc-2.7.3-cp38-cp38-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 69962f9e65537e9b7ff470f4b611510e6d55cf03da19e8fa4f1249752ee0ebcd
MD5 3176a1bc8cbba95d6eb05ffdd2e454b5
BLAKE2b-256 8c387e397f7b2a4f25763da1f6f988b084c43f8b153eed120b5f91c0b6fcd1a2

See more details on using hashes here.

File details

Details for the file pyhepmc-2.7.3-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: pyhepmc-2.7.3-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 445.9 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.14

File hashes

Hashes for pyhepmc-2.7.3-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 432a6796dd0233b2c4e6d0af48a5f4c7298ea032b360d5d2eefd99669bc14d41
MD5 4fadfd892371b38a9851ab506e96d8f3
BLAKE2b-256 6ef0cbdd6bbfcdd20016fba6557f1acc03a272c4b443852192c3fd177e2b6384

See more details on using hashes here.

File details

Details for the file pyhepmc-2.7.3-cp37-cp37m-win32.whl.

File metadata

  • Download URL: pyhepmc-2.7.3-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 381.4 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.14

File hashes

Hashes for pyhepmc-2.7.3-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 c1b7e4fcb293f88f4b6aad9a259fb38897cd1a039d100dcc0ba28a1b0b40e48d
MD5 71bb6b9d415a6d6067ef34bc1b13b822
BLAKE2b-256 fe2c8ce1d91a06552f8ca72c663a1209bb1fd91a57bc49c277f8747d75b98045

See more details on using hashes here.

File details

Details for the file pyhepmc-2.7.3-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for pyhepmc-2.7.3-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 fa4094004715800a9544deca226444fcc7dd9ac1cef1bd0711a4f16b8b371330
MD5 20e5408a25c4a9900dc9485795bcbcea
BLAKE2b-256 d9f2fb59e76bb0d0e6bea5ad4eab46e6f676810915aa8f7e7a6fbbf318b1047a

See more details on using hashes here.

File details

Details for the file pyhepmc-2.7.3-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for pyhepmc-2.7.3-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 35ae93a604be4d51790f0fcc65e561cf457ac7aefa7c1ffd6e01f6e6e10b786a
MD5 35720db39dbc5377d40823feaeb546d9
BLAKE2b-256 9e6962dfe1724fa3d43664fbea544cc26e3fe77117738a6bf6fd7dbda7856d1d

See more details on using hashes here.

File details

Details for the file pyhepmc-2.7.3-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyhepmc-2.7.3-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 d2d4cc09b689f63fc291db5642787755051dbd4c645abbd6e2d52974130f4a17
MD5 286e332c80296d3f3209034e5edb8f5a
BLAKE2b-256 a03129c8ad8cd934f98b878a598ba1f49dc76eab1943b2e541451a7cad691a3a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page