Skip to main content

Pythonic interface to the HepMC3 C++ library licensed under LGPL-v3.

Project description

A Pythonic wrapper for the HepMC3 C++ library.

https://scikit-hep.org/assets/images/Scikit--HEP-Project-blue.svg https://badge.fury.io/py/pyhepmc.svg https://coveralls.io/repos/github/scikit-hep/pyhepmc/badge.svg?branch=main https://zenodo.org/badge/DOI/10.5281/zenodo.7013498.svg

pyhepmc was formerly known as pyhepmc-ng. The development of pyhepmc-ng continues in the pyhepmc package.

HepMC3 has its own Python bindings. Why should you use these?

pyhepmc is easy to install

The command pip install pyhepmc just works on all common platforms. Since we publish binary wheels, you don’t need to compile anything. Since we include the HepMC3 library, you don’t need to install it separately either.

However, building from source is also easy. External software is not required. Just download the repository with git clone --recursive and run pip install -v -e ..

pyhepmc is Pythonic and Jupyter notebook-friendly

pyhepmc is a hand-crafted mapping of C++ code to Python, see documentation for details. Python idioms are supported where appropriate. The classes are designed to render well in Jupyter notebooks. IO is simplified. Events can be visualized in Jupyter notebooks.

pyhepmc supports visualizations powered by graphviz

pyhepmc can optionally visualize events, using the mature graphviz library as a backend.

docs/_static/pyhepmc.svg

pyhepmc is actively maintained

pyhepmc is part of the Scikit-HEP project, which aims to provide all tools needed by particle physicists to do data analysis in Python. It is developed in close collaboration with the HepMC3 project.

pyhepmc is thoroughly unit tested

We have 100% coverage for the Python API.

Documentation

pyhepmc largely mirrors the C++ interface of the HepMC3 library, which is documented here. Parts of the documentation have been copied from HepMC3. Documentation is available as Python docstrings, so you can use Python’s help() browser to learn about the API. Alternatively, you can consult the online reference generated from these docstrings which includes some examples.

License

The pyhepmc code is covered by the BSD 3-clause license, but its main functionality comes from bundled software which is released under different licenses. The HepMC3 library is licensed under LGPL-v3 and bundles other software which is released under different licenses. See the files LICENSE and LICENSE_bundled in the source directory for details.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyhepmc-2.9.0.tar.gz (356.2 kB view details)

Uploaded Source

Built Distributions

pyhepmc-2.9.0-cp310-cp310-win_amd64.whl (448.5 kB view details)

Uploaded CPython 3.10 Windows x86-64

pyhepmc-2.9.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (579.2 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

pyhepmc-2.9.0-cp310-cp310-macosx_10_9_x86_64.whl (520.8 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

pyhepmc-2.9.0-cp310-cp310-macosx_10_9_universal2.whl (957.6 kB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64)

pyhepmc-2.9.0-cp39-cp39-win_amd64.whl (448.6 kB view details)

Uploaded CPython 3.9 Windows x86-64

pyhepmc-2.9.0-cp39-cp39-win32.whl (379.5 kB view details)

Uploaded CPython 3.9 Windows x86

pyhepmc-2.9.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (523.3 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

pyhepmc-2.9.0-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl (540.8 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ i686

pyhepmc-2.9.0-cp39-cp39-macosx_10_9_x86_64.whl (520.9 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

pyhepmc-2.9.0-cp39-cp39-macosx_10_9_universal2.whl (957.7 kB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

pyhepmc-2.9.0-cp38-cp38-win_amd64.whl (448.3 kB view details)

Uploaded CPython 3.8 Windows x86-64

pyhepmc-2.9.0-cp38-cp38-win32.whl (379.5 kB view details)

Uploaded CPython 3.8 Windows x86

pyhepmc-2.9.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (523.0 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

pyhepmc-2.9.0-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl (540.5 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ i686

pyhepmc-2.9.0-cp38-cp38-macosx_10_9_x86_64.whl (520.7 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

pyhepmc-2.9.0-cp38-cp38-macosx_10_9_universal2.whl (957.5 kB view details)

Uploaded CPython 3.8 macOS 10.9+ universal2 (ARM64, x86-64)

pyhepmc-2.9.0-cp37-cp37m-win_amd64.whl (445.9 kB view details)

Uploaded CPython 3.7m Windows x86-64

pyhepmc-2.9.0-cp37-cp37m-win32.whl (381.5 kB view details)

Uploaded CPython 3.7m Windows x86

pyhepmc-2.9.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (526.7 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

pyhepmc-2.9.0-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl (547.9 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ i686

pyhepmc-2.9.0-cp37-cp37m-macosx_10_9_x86_64.whl (512.5 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file pyhepmc-2.9.0.tar.gz.

File metadata

  • Download URL: pyhepmc-2.9.0.tar.gz
  • Upload date:
  • Size: 356.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.15

File hashes

Hashes for pyhepmc-2.9.0.tar.gz
Algorithm Hash digest
SHA256 cb7ca20c5936825656db53e96151e19a01cc4e07c25e32b89d433dd563eedd0d
MD5 502224e3b878b1b0b833b1e0f7557461
BLAKE2b-256 6b7eee0266b1b6557fac37796e82a1f1bca9d42ee453254a7b403a2e6370f54e

See more details on using hashes here.

File details

Details for the file pyhepmc-2.9.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: pyhepmc-2.9.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 448.5 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.15

File hashes

Hashes for pyhepmc-2.9.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 fbd2c196c541b2006adab3e1788d6d1b826489e242c6018405d54a3bef71c910
MD5 9657428bcddfd3d8a48e59dcd51d105a
BLAKE2b-256 a297017e8116dabbf66f8f05059f414bbc85a6436ba71d7c4b21448214909a78

See more details on using hashes here.

File details

Details for the file pyhepmc-2.9.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyhepmc-2.9.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 09cdf12230686daf1ff0c33925638c11d93d05f3de9e0f7fb822aeb5695aee74
MD5 6914a5f1ecc6e373a743a32754568b8e
BLAKE2b-256 d9adbc09d38518af1a0df9cc99c50a444e8c7b453793aaee536023b390415456

See more details on using hashes here.

File details

Details for the file pyhepmc-2.9.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyhepmc-2.9.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 bf012a3dd9a8645336c2afd79ed48777023c9b360ed7e4d032b039c204109635
MD5 553f93fc1ea7a8c9e70af057d496f13d
BLAKE2b-256 dbccc3f5e57298706c06211ef6822e75445eebded0903566caa49fe7475fb7e2

See more details on using hashes here.

File details

Details for the file pyhepmc-2.9.0-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for pyhepmc-2.9.0-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 32bf233b1341187bd4c6729ce03e6f3c634b3c371df141dd07b32849fdb5aa1c
MD5 a28d102e98ccd863dfeb6d8fe899812c
BLAKE2b-256 c6303088bac5a77d6933bac8bf1e7c9161b6585c661fbba4902dc84e0e4b9f4c

See more details on using hashes here.

File details

Details for the file pyhepmc-2.9.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: pyhepmc-2.9.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 448.6 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.15

File hashes

Hashes for pyhepmc-2.9.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 150f536f99cc59f6668f2ad0dd6373dc8371634ff0f2db80f5b5e197c7dc92de
MD5 48918ceaf172e9968072c09c01eeeb46
BLAKE2b-256 a76ac9dad3dcc60817815c1e7fe93fcde0dfd766085e03cec3a6050f41acb984

See more details on using hashes here.

File details

Details for the file pyhepmc-2.9.0-cp39-cp39-win32.whl.

File metadata

  • Download URL: pyhepmc-2.9.0-cp39-cp39-win32.whl
  • Upload date:
  • Size: 379.5 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.15

File hashes

Hashes for pyhepmc-2.9.0-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 9791c9857a8441de2fcea1f0e2750dbcd0accb912f1fecc3a9537ea749d25bf6
MD5 36ac0a308c458ccec453e66144c1781a
BLAKE2b-256 42d4b7dad8e8d9783ce85c3f8fa53134ec0da7235e3876ff2c093d07be5eff21

See more details on using hashes here.

File details

Details for the file pyhepmc-2.9.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for pyhepmc-2.9.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 725b7ac497d4ed1e124f7b459b1f3f4fa697e94c4ad413394d9d801f9667e544
MD5 5e8532bf0537895b0a8990cdb07bf2ef
BLAKE2b-256 bee8f6f90e45e5bedbf63d154171fa65954984729a8dfad372ac28a108b2696c

See more details on using hashes here.

File details

Details for the file pyhepmc-2.9.0-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for pyhepmc-2.9.0-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 002b429c74b540e754fd5f2e4d5203eed27e6bcaabb7de0ae269817ab3597ef7
MD5 1003b2e400c3963fcfc7ff8be294bb2b
BLAKE2b-256 61d5f8f0158935eab90d49f7ee66e7fab683f2a36fece813ac4cb60d3e0fabba

See more details on using hashes here.

File details

Details for the file pyhepmc-2.9.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyhepmc-2.9.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 4c01a2517e3d1aee5ce7439231de92cd973da230f2ef9168cfe500fa809b072f
MD5 c663ee079dc96e53ceb7256af91b90a5
BLAKE2b-256 12e8ed273daa0460e59948ebf35011eaafe6f6b69e19af8d2fdd7c7cbfa01b05

See more details on using hashes here.

File details

Details for the file pyhepmc-2.9.0-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for pyhepmc-2.9.0-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 976a73fc21cc56b43f977ac2da48015f13a8a8305fa2c0f37fd0948d0d911b36
MD5 abebcb9ee202c37d1431d12f9214368e
BLAKE2b-256 5f0d1c596f2512459cc3ad61d401afbc80bbe398717438a7aec1f33c2998702e

See more details on using hashes here.

File details

Details for the file pyhepmc-2.9.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: pyhepmc-2.9.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 448.3 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.15

File hashes

Hashes for pyhepmc-2.9.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 a0fc4e9a0595a96044a5a9a1114ba578b6df12724515f914fdcfbcd41300316c
MD5 4818eb08cf12f9ae4812c7661e270f0e
BLAKE2b-256 551598d4e83e074956d0b32836b6f0265881356743e963a2798a8f6658075447

See more details on using hashes here.

File details

Details for the file pyhepmc-2.9.0-cp38-cp38-win32.whl.

File metadata

  • Download URL: pyhepmc-2.9.0-cp38-cp38-win32.whl
  • Upload date:
  • Size: 379.5 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.15

File hashes

Hashes for pyhepmc-2.9.0-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 6133c98e51bb0a98b14aaf5b0a4eb41bbb81e421cd693196f7522c20f61e45d0
MD5 d83b793dd03526b9b07d39089ccf46e9
BLAKE2b-256 086bcccfd6ae7bccf21b08890400a99060dcf43e41ae36c70f77d7c26c840e35

See more details on using hashes here.

File details

Details for the file pyhepmc-2.9.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for pyhepmc-2.9.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 1dca87fbe91be4176a679fb9ce75356c8f48a51df8b9beed141ba7c075ee30bf
MD5 55cab27a9e868f415b95956d6c2b9397
BLAKE2b-256 d8c1c571a1f6885bcb24580abf20afa1291a29a71b77276c6826475912ddcd80

See more details on using hashes here.

File details

Details for the file pyhepmc-2.9.0-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for pyhepmc-2.9.0-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 42338dec375cec71d334dfb8df091d673b810b2c478233e462877bb3a2b048c0
MD5 fa9741f499a27b92e8966ad8f52e8dcb
BLAKE2b-256 93389cfc3dd46ac2dad30257928f4e00df961d170b0490e98c5e58671fb01e84

See more details on using hashes here.

File details

Details for the file pyhepmc-2.9.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyhepmc-2.9.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ab73a5510b95a65810c9c109a8fe5de7be203004a9adcc8eb7e1260eb355d593
MD5 9f2db436e04aecac9f1b15a36a876f15
BLAKE2b-256 51f5d36c1d53b6d106ff1b93092821bdd3d7be163ed7f33cc8531d4709f2c8dd

See more details on using hashes here.

File details

Details for the file pyhepmc-2.9.0-cp38-cp38-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for pyhepmc-2.9.0-cp38-cp38-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 19ab461f7dcbfbb3abe5021f17481bf1517097c630575f45a745f2192c9d0e2b
MD5 acd1c2bf52658a995506363fe8f60b44
BLAKE2b-256 87840dcaa3da411848ba2c6ab63cef45893a74a6bbe393161612ca2f541c0477

See more details on using hashes here.

File details

Details for the file pyhepmc-2.9.0-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: pyhepmc-2.9.0-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 445.9 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.15

File hashes

Hashes for pyhepmc-2.9.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 230488ee44de55ed0feac7a384316426aa88dc0420efd91173e01040d7ea3383
MD5 02397b8ebb7a57d76fd8aba3ef10f986
BLAKE2b-256 424c9e7b1460be9f635917751f5e2b20926d3eebb6cc1f7815fd99874a8c5b7a

See more details on using hashes here.

File details

Details for the file pyhepmc-2.9.0-cp37-cp37m-win32.whl.

File metadata

  • Download URL: pyhepmc-2.9.0-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 381.5 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.15

File hashes

Hashes for pyhepmc-2.9.0-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 5d4767345d5418636f9c5d22ec87520188cdf00b5a9abf65d6077cb09ca8251a
MD5 6ba35119a005f5ee6faef948a2cbf2ce
BLAKE2b-256 0d5df106b436d62b2c0475cedcd6fa5102b3f4dccf06ba39a3a526543901f0a3

See more details on using hashes here.

File details

Details for the file pyhepmc-2.9.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for pyhepmc-2.9.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 365387bb62fb4ddc05474c4a7ff31da40bd0bc3584b266c3f8f5e076a93d3a5a
MD5 1b1b79d1ab77ccfb254a4c172238bebf
BLAKE2b-256 953a7b9d83452b8241376741ce7a12ea352c8a307418429aeebbeff51fb553ee

See more details on using hashes here.

File details

Details for the file pyhepmc-2.9.0-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for pyhepmc-2.9.0-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 d4bcfbda5ffcf7aaed73d2326f2f8f526a1af33014997fcd068137aa407bccb5
MD5 a428faedfe39cd8236b5e2875cb5871b
BLAKE2b-256 03d3514a236411d730057dea779de73466d2d939b74c85cba7bc1422354c18b7

See more details on using hashes here.

File details

Details for the file pyhepmc-2.9.0-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyhepmc-2.9.0-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 cd984fdafde835c42c26c0484fd908c031958275db174e8d13a62a767913c9be
MD5 83d4bb720bdf8b75f77cee4c2d53148a
BLAKE2b-256 323cd07fa3a4d153985d7be4b59b55a3896ea3c0f1e0d57c5fddc8f94ef9b34f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page