Skip to main content

(partial) pure python histfactory implementation

Project description

pyhf logo

pure-python fitting/limit-setting/interval estimation HistFactory-style

GitHub Project DOI Scikit-HEP

GitHub Actions Status: CI GitHub Actions Status: Publish Docker Automated Code Coverage Language grade: Python CodeFactor Code style: black

Docs Binder

PyPI version Supported Python versionss Docker Stars Docker Pulls

The HistFactory p.d.f. template [CERN-OPEN-2012-016] is per-se independent of its implementation in ROOT and sometimes, it's useful to be able to run statistical analysis outside of ROOT, RooFit, RooStats framework.

This repo is a pure-python implementation of that statistical model for multi-bin histogram-based analysis and its interval estimation is based on the asymptotic formulas of "Asymptotic formulae for likelihood-based tests of new physics" [arXiv:1007.1727]. The aim is also to support modern computational graph libraries such as PyTorch and TensorFlow in order to make use of features such as autodifferentiation and GPU acceleration.

Hello World

>>> import pyhf
>>> pdf = pyhf.simplemodels.hepdata_like(signal_data=[12.0, 11.0], bkg_data=[50.0, 52.0], bkg_uncerts=[3.0, 7.0])
>>> CLs_obs, CLs_exp = pyhf.infer.hypotest(1.0, [51, 48] + pdf.config.auxdata, pdf, return_expected=True)
>>> print('Observed: {}, Expected: {}'.format(CLs_obs, CLs_exp))
Observed: [0.05290116], Expected: [0.06445521]

What does it support

Implemented variations:

  • HistoSys
  • OverallSys
  • ShapeSys
  • NormFactor
  • Multiple Channels
  • Import from XML + ROOT via uproot
  • ShapeFactor
  • StatError
  • Lumi Uncertainty

Computational Backends:

  • NumPy
  • PyTorch
  • TensorFlow
  • JAX

Available Optimizers

NumPy Tensorflow PyTorch
SLSQP (scipy.optimize) Newton's Method (autodiff) Newton's Method (autodiff)
MINUIT (iminuit) . .

Todo

  • StatConfig
  • Non-asymptotic calculators

results obtained from this package are validated against output computed from HistFactory workspaces

A one bin example

nobs = 55, b = 50, db = 7, nom_sig = 10.
manual manual

A two bin example

bin 1: nobs = 100, b = 100, db = 15., nom_sig = 30.
bin 2: nobs = 145, b = 150, db = 20., nom_sig = 45.
manual manual

Installation

To install pyhf from PyPI with the NumPy backend run

python -m pip install pyhf

and to install pyhf with all additional backends run

python -m pip install pyhf[backends]

or a subset of the options.

To uninstall run

python -m pip uninstall pyhf

Questions

If you have a question about the use of pyhf not covered in the documentation, please ask a question on Stack Overflow with the [pyhf] tag, which the pyhf dev team watches.

Stack Overflow pyhf tag

If you believe you have found a bug in pyhf, please report it in the GitHub Issues.

Citation

As noted in Use and Citations, the preferred BibTeX entry for citation of pyhf is

@software{pyhf,
  author = "{Heinrich, Lukas and Feickert, Matthew and Stark, Giordon}",
  title = "{pyhf: v0.4.1}",
  version = {0.4.1},
  doi = {10.5281/zenodo.1169739},
  url = {https://github.com/scikit-hep/pyhf},
}

Authors

Please check the contribution statistics for a list of contributors

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyhf-0.4.1.tar.gz (6.9 MB view details)

Uploaded Source

Built Distribution

pyhf-0.4.1-py2.py3-none-any.whl (98.2 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file pyhf-0.4.1.tar.gz.

File metadata

  • Download URL: pyhf-0.4.1.tar.gz
  • Upload date:
  • Size: 6.9 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/45.2.0 requests-toolbelt/0.9.1 tqdm/4.43.0 CPython/3.7.6

File hashes

Hashes for pyhf-0.4.1.tar.gz
Algorithm Hash digest
SHA256 cd4f3e927d05171708717c93e0774b824bad5c9caa88143931dd7086dff5aece
MD5 0f5000af56e2d61fd7693fbdc6b29f05
BLAKE2b-256 5375ad3eff822e36225caa282ae47b843af8fc6631ef49c32ee4d88dfe3f14ed

See more details on using hashes here.

File details

Details for the file pyhf-0.4.1-py2.py3-none-any.whl.

File metadata

  • Download URL: pyhf-0.4.1-py2.py3-none-any.whl
  • Upload date:
  • Size: 98.2 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/45.2.0 requests-toolbelt/0.9.1 tqdm/4.43.0 CPython/3.7.6

File hashes

Hashes for pyhf-0.4.1-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 d013a7d8a874a9ed455b4dd9afe005d269097cf56cc98c39675f854bed27c0d9
MD5 3289fcdfca644bac9ce77e92d3ebb5e3
BLAKE2b-256 a382a3dfec322dced0ad0c417499ac9c2b2364c7889b304037adf0765d975e63

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page