Skip to main content

Tools to convert observation data to and from a variety of useful formats

Project description

pyinaturalist-convert

Build status codecov Docs PyPI Conda PyPI - Python Versions

This package provides tools to convert iNaturalist observation data to and from a wide variety of useful formats. This is mainly intended for use with the iNaturalist API via pyinaturalist, but also works with other data sources.

Complete project documentation can be found at pyinaturalist-convert.readthedocs.io.

Formats

Import

Export

  • CSV, Excel, and anything else supported by tablib
  • Dataframes, Feather, Parquet, and anything else supported by pandas
  • Darwin Core
  • GeoJSON
  • GPX
  • SQLite
  • SQLite + FTS5 text search for taxonomy

Installation

Install with pip:

pip install pyinaturalist-convert

Or with conda:

conda install -c conda-forge pyinaturalist-convert

To keep things modular, many format-specific dependencies are not installed by default, so you may need to install some more packages depending on which features you want. Each module's docs lists any extra dependencies needed, and a full list can be found in pyproject.toml.

For getting started, it's recommended to install all optional dependencies:

pip install pyinaturalist-convert[all]

Usage

Export

Get your own observations and save to CSV:

from pyinaturalist import get_observations
from pyinaturalist_convert import *

observations = get_observations(user_id='my_username')
to_csv(observations, 'my_observations.csv')

Or any other supported format:

to_dwc(observations, 'my_observations.dwc')
to_excel(observations, 'my_observations.xlsx')
to_feather(observations, 'my_observations.feather')
to_geojson(observations, 'my_observations.geojson')
to_gpx(observations, 'my_observations.gpx')
to_hdf(observations, 'my_observations.hdf')
to_json(observations, 'my_observations.json')
to_parquet(observations, 'my_observations.parquet')
df = to_dataframe(observations)

Import

Most file formats can be loaded via pyinaturalist_convert.read():

observations = read('my_observations.csv')
observations = read('my_observations.xlsx')
observations = read('my_observations.feather')
observations = read('my_observations.hdf')
observations = read('my_observations.json')
observations = read('my_observations.parquet')

Download

Download the complete research-grade observations dataset:

download_dwca_observations()

And load it into a SQLite database:

load_dwca_observations()

And do the same with the complete taxonomy dataset:

download_dwca_taxa()
load_dwca_taxa()

Load taxonomy data into a full text search database:

load_taxon_fts_table(languages=['english', 'german'])

And get lightning-fast autocomplete results from it:

ta = TaxonAutocompleter()
ta.search('aves')
ta.search('flughund', language='german')

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyinaturalist-convert-0.5.0.tar.gz (1.6 MB view details)

Uploaded Source

Built Distribution

pyinaturalist_convert-0.5.0-py3-none-any.whl (42.7 kB view details)

Uploaded Python 3

File details

Details for the file pyinaturalist-convert-0.5.0.tar.gz.

File metadata

  • Download URL: pyinaturalist-convert-0.5.0.tar.gz
  • Upload date:
  • Size: 1.6 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.2.0b1 CPython/3.10.5 Linux/5.15.0-1014-azure

File hashes

Hashes for pyinaturalist-convert-0.5.0.tar.gz
Algorithm Hash digest
SHA256 cafd4d6d512e85ebec2d2c01c3880fbaaaa00b0ea7f57cf87a9d0c0530bd6048
MD5 04bcce68eabb2c368503487e14282f2d
BLAKE2b-256 2acfc06ec71f6cdc9c6f84477ee5a93f16718085e745f594fa899245cea4753f

See more details on using hashes here.

File details

Details for the file pyinaturalist_convert-0.5.0-py3-none-any.whl.

File metadata

File hashes

Hashes for pyinaturalist_convert-0.5.0-py3-none-any.whl
Algorithm Hash digest
SHA256 6a289e6bf7c33c5b43e9afe6ddfe83f47628a7a85155fd2612c1405635dcc982
MD5 4a3eb2cf033d3162d8e3dc87cb65e6c3
BLAKE2b-256 88b0c56281a702ad42589edc9774f9ea90cc682433732eb56d3ffad015df392b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page