Skip to main content

Call stack profiler for Python. Shows you why your code is slow!

Project description

pyinstrument

PyPI version .github/workflows/test.yml Build wheels

Documentation

Screenshot

Pyinstrument is a Python profiler. A profiler is a tool to help you optimize your code - make it faster. To get the biggest speed increase you should focus on the slowest part of your program. Pyinstrument helps you find it!

☕️ Not sure where to start? Check out this video tutorial from calmcode.io!

Installation

pip install pyinstrument

Pyinstrument supports Python 3.7+.

To run Pyinstrument from a git checkout, there's a build step. Take a look at Contributing for more info.

Documentation

To learn how to use pyinstrument, or to check the reference, head to the documentation.

Known issues

  • Profiling code inside a Docker container can cause some strange results, because the gettimeofday syscall that pyinstrument uses is slow in that environment. See #83
  • When using pyinstrument script.py where script.py contains a class serialized with pickle, you might encounter errors because the serialisation machinery doesn't know where __main__ is. See this issue for workarounds

Changelog

v4.4.0

5 November 2022

  • Adds the class name to methods in the console output (#203)
  • Fix a bug that caused pyinstrument machinery to appear at the start of a profile (#215)
  • Frames that set a __traceback_hide__ local variable will now be removed from the output (#217)
  • Jupyter/IPython magic now supports async/await, if you run with a --async_mode=enabled flag. (#212)
  • A big refactor to the backend, allowing more than just static information to be captured. This currently is just powering the class name feature, but more is to come!

v4.3.0

21 August 2022

  • Adds buttons in the HTML output to switch between absolute and proportional (percentage) time.
  • Adds a command line flag --interval (seconds, default 0.001) to change the interval that pyinstrument samples a program. This is useful for long-running programs, where increasing the interval reduces the memory overhead.
  • Includes wheels for CPython 3.11.

v4.2.0

  • Adds a command-line option -p --render-option that allows arbitrary setting of render options. This lets you set options like filter_threshold from the command line, by doing something like pyinstrument -p processor_options.filter_threshold=0.

    Here's the help output for the option:

      -p RENDER_OPTION, --render-option=RENDER_OPTION
                        options to pass to the renderer, in the format
                        'flag_name' or 'option_name=option_value'. For
                        example, to set the option 'time', pass '-p
                        time=percent_of_total'. To pass multiple options, use
                        the -p option multiple times. You can set processor
                        options using dot-syntax, like '-p
                        processor_options.filter_threshold=0'. option_value is
                        parsed as a JSON value or a string.
    
  • Adds the ability to view times in the console output as percentages, rather than absolute times. Use the ConsoleRenderer option time='percent_of_total', or on the command line, use -p, like pyinstrument -p time=percent_of_total.

  • Adds command line options for loading and saving pyinstrument sessions. You can save the raw data for a pyinstrument session with -r session, like pyinstrument -r session -o session.pyisession myscript.py. Loading is via --load, e.g. pyinstrument --load session.pyisession.

  • Command line output format is inferred from the -o output file extension. So if you do pyinstrument -o profile.html myscript.py, you don't need to supply -r html, pyinstrument will automatically use the HTML renderer. Or if you do pyinstrument -o profile.pyisession myscript.py, it will save a raw session object.

  • Adds usage examples for FastAPI and pytest to the documentation.

  • Fixes a bug causing NotImplementedError when using async_mode=strict.

  • Adds support for Python 3.11

v4.1.1

  • Fixed an issue causing PYINSTRUMENT_PROFILE_DIR_RENDERER to output the wrong file extension when used with the speedscope renderer.

v4.1.0

  • You can now use pyinstrument natively in an IPython notebook! Just use %load_ext pyinstrument at the top of your notebook, and then %%pyinstrument in the cell you want to profile.
  • Added support for the speedscope format. This provides a way to view interactive flamecharts using pyinstrument. To use, profile with pyinstrument -r speedscope, and upload to the speedscope web app.
  • You can now configure renderers for the Django middleware file output, using the PYINSTRUMENT_PROFILE_DIR_RENDERER option.
  • Added wheels for Linux aarch64 (64-bit ARM).

v4.0.4

  • Fix a packaging issue where a package called 'test' was installed alongside pyinstrument
  • Use more modern C APIs to resolve deprecation warnings on Python 3.10.
  • Minor docs fixes

v4.0.3

  • CPython 3.10 support
  • Improve error messages when trying to use Profiler from multiple threads
  • Fix crash when rendering sessions that contain a module in a FrameGroup

v4.0.2

  • Fix some packaging issues

v4.0.0

  • Async support! Pyinstrument now detects when an async task hits an await, and tracks time spent outside of the async context under this await.

    So, for example, here's a simple script with an async task that does a sleep:

    import asyncio
    from pyinstrument import Profiler
    
    async def main():
        p = Profiler(async_mode='disabled')
    
        with p:
            print('Hello ...')
            await asyncio.sleep(1)
            print('... World!')
    
        p.print()
    
    asyncio.run(main())
    

    Before Pyinstrument 4.0.0, we'd see only time spent in the run loop, like this:

      _     ._   __/__   _ _  _  _ _/_   Recorded: 18:33:03  Samples:  2
     /_//_/// /_\ / //_// / //_'/ //     Duration: 1.006     CPU time: 0.001
    /   _/                      v3.4.2
    
    Program: examples/async_example_simple.py
    
    1.006 _run_once  asyncio/base_events.py:1784
    └─ 1.005 select  selectors.py:553
          [3 frames hidden]  selectors, <built-in>
             1.005 kqueue.control  <built-in>:0
    

    Now, with pyinstrument 4.0.0, we get:

      _     ._   __/__   _ _  _  _ _/_   Recorded: 18:30:43  Samples:  2
     /_//_/// /_\ / //_// / //_'/ //     Duration: 1.007     CPU time: 0.001
    /   _/                      v4.0.0
    
    Program: examples/async_example_simple.py
    
    1.006 main  async_example_simple.py:4
    └─ 1.005 sleep  asyncio/tasks.py:641
          [2 frames hidden]  asyncio
             1.005 [await]
    

    For more information, check out the async profiling documentation and the Profiler.async_mode property.

  • Pyinstrument has a documentation site, including full Python API docs!

v3.4.2

  • Fix a bug that caused --show, --show-regex, --show-all to be ignored on the command line.

v3.4.1

  • Under-the-hood modernisation

v3.4.0

  • Added timeline option (boolean) to Profiler methods output_html() and open_in_browser().

v3.3.0

  • Fixed issue with pyinstrument -m module, where pyinstrument wouldn't find modules in the current directory.
  • Dropped support for Python 2.7 and 3.5. Old versions will remain available on PyPI, and pip should choose the correct one automatically.

v3.2.0

  • Added the ability to track time in C functions. Minor note - Pyinstrument will record time spent C functions as 'leaf' functions, due to a limitation in how Python records frames. Python -> C -> Python is recorded as Python -> Python, but Python -> Python -> C will be attributed correctly. (#103)

v3.1.2

  • Fix <__array_function__ internals> frames appearing as app code in reports

v3.1.1

  • Added support for timeline mode on HTML and JSON renderers
  • Released as a tarball as well as a universal wheel

v3.1.0

  • Added PYINSTRUMENT_SHOW_CALLBACK option on the Django middleware to add a condition to showing the profile (could be used to run pyinstrument on a live server!)
  • Fixed bug in the Django middleware where file would not be written because of a unicode error

v3.0.3

  • Fixed bug with the Django middleware on Windows where profiling would fail because we were trying to put an illegal character '?' in the profile path. (#66)

v3.0.2

  • Add --show and --show-regex options, to mark certain files to be displayed. This helps to profile inside specific modules, while hiding others. For example, pyinstrument --show '*/sympy/*' script.py.

v3.0.1

  • Fix #60: pass all arguments after -m module_name to the called module
  • Fix crash during HTML/JSON output when no frames were captured.

v3.0.0

  • Pyinstrument will now hide traces through libraries that you're using by default. So instead of showing you loads of frames going through the internals of something external e.g. urllib, it lets you focus on your code.

    Before After
    image image

    To go back to the old behaviour, use --show-all on the command line.

  • 'Entry' frames of hidden groups are shown, so you know which call is the problem

  • Really slow frames in the groups are shown too, e.g. the 'read' call on the socket

  • Application code is highlighted in the console

  • Additional metrics are shown at the top of the trace - timestamp, number of samples, duration, CPU time

  • Hidden code is controlled by the --hide or --hide-regex options - matching on the path of the code files.

      --hide=EXPR           glob-style pattern matching the file paths whose
                            frames to hide. Defaults to '*/lib/*'.
      --hide-regex=REGEX    regex matching the file paths whose frames to hide.
                            Useful if --hide doesn't give enough control.
    
  • Outputting a timeline is supported from the command line.

      -t, --timeline        render as a timeline - preserve ordering and don't
                            condense repeated calls
    
  • Because there are a few rendering options now, you can load a previous profiling session using --load-prev - pyinstrument keeps the last 10 sessions.

  • Hidden groups can also call back into application code, that looks like this:

    image

  • (internal) When recording timelines, frame trees are completely linear now, allowing for the creation of super-accurate frame charts.

  • (internal) The HTML renderer has been rewritten as a Vue.js app. All the console improvements apply to the HTML output too, plus it's interactive.

  • (internal) A lot of unit and integration tests added!

Yikes! See #49 for the gory details. I hope you like it.

v2.3.0

  • Big refactor!
    • Recorders have been removed. The frame recording is now internal to the Profiler object. This means the 'frame' objects are more general-purpose, which paves the way for...
    • Processors! These are functions that mutate the tree to sculpt the output. They are used by the renderers to filter the output to the correct form. Now, instead of a time-aggregating recorder, the profiler just uses timeline-style recording (this is lower-overhead anyway) and the aggregation is done as a processing step.
    • The upshot of this is that it's now way easier to alter the tree to filter stuff out, and do more advanced things like combining frames that we don't care about. More features to come that use this in v3.0!
  • Importlib frames are removed - you won't see them at all. Their children are retained, so imports are just transparent.
  • Django profile file name is now limited to a hundred of characters (#50)
  • Fix bug with --html option (#53)
  • Add --version command line option

v2.2.1

  • Fix crash when using on the command line.

v2.2.0

  • Added support for JSON output. Use pyinstrument --renderer=json scriptfile.py. PR

  • @iddan has put together an interactive viewer using the JSON output!

    image

  • When running pyinstrument --html and you don't pipe the output to a file, pyinstrument will write the console output to a temp file and open that in a browser.

v2.1.0

  • Added support for running modules with pyinstrument via the command line. The new syntax is the -m flag e.g. pyinstrument -m module_name! PR

v2.0.4

v2.0.3

  • Pyinstrument can now be used in a with block.

    For example:

    profiler = pyinstrument.Profiler()
    with profiler:
        # do some work here...
    print(profiler.output_text())
    
  • Middleware fix for older versions of Django

v2.0.2

  • Fix for max recursion error when used to profile programs with a lot of frames on the stack.

v2.0.1

  • Ensure license is included in the sdist.

v2.0.0

  • Pyinstrument uses a new profiling mode. Rather than using signals, pyintrument uses a new statistical profiler built on PyEval_SetProfile. This means no more main thread restriction, no more IO errors when using Pyinstrument, and no need for a separate more 'setprofile' mode!

  • Renderers. Users can customize Pyinstrument to use alternative renderers with the renderer argument on Profiler.output(), or using the --renderer argument on the command line.

  • Recorders. To support other use cases of Pyinstrument (e.g. flame charts), pyinstrument now has a 'timeline' recorder mode. This mode records captured frames in a linear way, so the program execution can be viewed on a timeline.

v0.13

  • pyinstrument command. You can now profile python scripts from the shell by running $ pyinstrument script.py. This is now equivalent to python -m pyinstrument. Thanks @asmeurer!

v0.12

  • Application code is highlighted in HTML traces to make it easier to spot

  • Added PYINSTRUMENT_PROFILE_DIR option to the Django interface, which will log profiles of all requests to a file the specified folder. Useful for profiling API calls.

  • Added PYINSTRUMENT_USE_SIGNAL option to the Django interface, for use when signal mode presents problems.

Contributing

To setup a dev environment:

virtualenv --python=python3 env
. env/bin/activate
pip install --upgrade pip
pip install -r requirements-dev.txt
pre-commit install --install-hooks

To get some sample output:

pyinstrument examples/wikipedia_article_word_count.py

To run the tests:

pytest

To run linting checks locally:

pre-commit run --all-files

Some of the pre-commit checks, like isort or black, will auto-fix the problems they find. So if the above command returns an error, try running it again, it might succeed the second time :)

Running all the checks can be slow, so you can also run checks individually, e.g., to format source code that fails isort or black checks:

pre-commit run --all-files isort
pre-commit run --all-files black

To diagnose why pyright checks are failing:

pre-commit run --all-files pyright

The HTML renderer Vue.js app

The HTML renderer works by embedding a JSON representation of the sample with a Javascript 'bundle' inside an HTML file that can be viewed in any web browser.

To edit the html renderer style, do:

cd html_renderer
npm ci
npm run serve

When launched without a top-level window.profileSession object, it will fetch a sample profile so you can work with it.

To compile the JS app and bundle it back into the pyinstrument python tool:

bin/build_js_bundle.py [--force]

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyinstrument-4.4.0.tar.gz (378.9 kB view details)

Uploaded Source

Built Distributions

pyinstrument-4.4.0-cp311-cp311-win_amd64.whl (105.4 kB view details)

Uploaded CPython 3.11 Windows x86-64

pyinstrument-4.4.0-cp311-cp311-win32.whl (104.8 kB view details)

Uploaded CPython 3.11 Windows x86

pyinstrument-4.4.0-cp311-cp311-musllinux_1_1_x86_64.whl (124.8 kB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

pyinstrument-4.4.0-cp311-cp311-musllinux_1_1_i686.whl (124.5 kB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ i686

pyinstrument-4.4.0-cp311-cp311-musllinux_1_1_aarch64.whl (124.8 kB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ ARM64

pyinstrument-4.4.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (120.9 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

pyinstrument-4.4.0-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (120.5 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

pyinstrument-4.4.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (119.5 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

pyinstrument-4.4.0-cp311-cp311-macosx_10_9_x86_64.whl (102.2 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

pyinstrument-4.4.0-cp311-cp311-macosx_10_9_universal2.whl (107.7 kB view details)

Uploaded CPython 3.11 macOS 10.9+ universal2 (ARM64, x86-64)

pyinstrument-4.4.0-cp310-cp310-win_amd64.whl (105.5 kB view details)

Uploaded CPython 3.10 Windows x86-64

pyinstrument-4.4.0-cp310-cp310-win32.whl (104.9 kB view details)

Uploaded CPython 3.10 Windows x86

pyinstrument-4.4.0-cp310-cp310-musllinux_1_1_x86_64.whl (125.8 kB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

pyinstrument-4.4.0-cp310-cp310-musllinux_1_1_i686.whl (125.0 kB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ i686

pyinstrument-4.4.0-cp310-cp310-musllinux_1_1_aarch64.whl (125.5 kB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ ARM64

pyinstrument-4.4.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (122.6 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

pyinstrument-4.4.0-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (122.5 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

pyinstrument-4.4.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (121.5 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

pyinstrument-4.4.0-cp310-cp310-macosx_10_9_x86_64.whl (102.4 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

pyinstrument-4.4.0-cp310-cp310-macosx_10_9_universal2.whl (108.2 kB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64)

pyinstrument-4.4.0-cp39-cp39-win_amd64.whl (105.5 kB view details)

Uploaded CPython 3.9 Windows x86-64

pyinstrument-4.4.0-cp39-cp39-win32.whl (104.9 kB view details)

Uploaded CPython 3.9 Windows x86

pyinstrument-4.4.0-cp39-cp39-musllinux_1_1_x86_64.whl (125.4 kB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

pyinstrument-4.4.0-cp39-cp39-musllinux_1_1_i686.whl (124.7 kB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ i686

pyinstrument-4.4.0-cp39-cp39-musllinux_1_1_aarch64.whl (125.2 kB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ ARM64

pyinstrument-4.4.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (122.2 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

pyinstrument-4.4.0-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (122.1 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

pyinstrument-4.4.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (121.2 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

pyinstrument-4.4.0-cp39-cp39-macosx_10_9_x86_64.whl (102.4 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

pyinstrument-4.4.0-cp39-cp39-macosx_10_9_universal2.whl (108.1 kB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

pyinstrument-4.4.0-cp38-cp38-win_amd64.whl (105.3 kB view details)

Uploaded CPython 3.8 Windows x86-64

pyinstrument-4.4.0-cp38-cp38-win32.whl (104.7 kB view details)

Uploaded CPython 3.8 Windows x86

pyinstrument-4.4.0-cp38-cp38-musllinux_1_1_x86_64.whl (125.1 kB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

pyinstrument-4.4.0-cp38-cp38-musllinux_1_1_i686.whl (124.4 kB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ i686

pyinstrument-4.4.0-cp38-cp38-musllinux_1_1_aarch64.whl (124.9 kB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ ARM64

pyinstrument-4.4.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (121.5 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

pyinstrument-4.4.0-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (121.3 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

pyinstrument-4.4.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (120.2 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

pyinstrument-4.4.0-cp38-cp38-macosx_10_9_x86_64.whl (102.1 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

pyinstrument-4.4.0-cp38-cp38-macosx_10_9_universal2.whl (107.5 kB view details)

Uploaded CPython 3.8 macOS 10.9+ universal2 (ARM64, x86-64)

pyinstrument-4.4.0-cp37-cp37m-win_amd64.whl (105.3 kB view details)

Uploaded CPython 3.7m Windows x86-64

pyinstrument-4.4.0-cp37-cp37m-win32.whl (104.7 kB view details)

Uploaded CPython 3.7m Windows x86

pyinstrument-4.4.0-cp37-cp37m-musllinux_1_1_x86_64.whl (124.5 kB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ x86-64

pyinstrument-4.4.0-cp37-cp37m-musllinux_1_1_i686.whl (124.0 kB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ i686

pyinstrument-4.4.0-cp37-cp37m-musllinux_1_1_aarch64.whl (124.4 kB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ ARM64

pyinstrument-4.4.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (119.9 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

pyinstrument-4.4.0-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (119.7 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

pyinstrument-4.4.0-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (118.7 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

pyinstrument-4.4.0-cp37-cp37m-macosx_10_9_x86_64.whl (102.0 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file pyinstrument-4.4.0.tar.gz.

File metadata

  • Download URL: pyinstrument-4.4.0.tar.gz
  • Upload date:
  • Size: 378.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.15

File hashes

Hashes for pyinstrument-4.4.0.tar.gz
Algorithm Hash digest
SHA256 be34a2e8118c14a616a64538e02430d9099d5d67d8a370f2888e4ac71e52bbb7
MD5 bf53b83e810062f0248bbcaf31bc2e69
BLAKE2b-256 9af81feae9239316e073dcdc53e6d1ffbd3d02bb2e0d3a755bc61439a6264221

See more details on using hashes here.

File details

Details for the file pyinstrument-4.4.0-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for pyinstrument-4.4.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 be9ac54a4dd07d969d5941e4dcba67d5aef5f6826f43b9ddda65553816f6abca
MD5 15ad57ff7fc5663d3db4cfdcf40d5109
BLAKE2b-256 eaa86c5772d2a4d50d4591fa09b58bb1074ef9c3b6033641e3e6752bb466d5fa

See more details on using hashes here.

File details

Details for the file pyinstrument-4.4.0-cp311-cp311-win32.whl.

File metadata

File hashes

Hashes for pyinstrument-4.4.0-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 fcd717910a8ab6deca353aded890403bbaea14a6dd99a87c3367f24721d2d6aa
MD5 0f7b7df4bb0f88d72ab05146c3e6f757
BLAKE2b-256 d2b763643b7ef6a42a8dedcc3542bafbf0020614a85b42c15feff25d86ce5615

See more details on using hashes here.

File details

Details for the file pyinstrument-4.4.0-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pyinstrument-4.4.0-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 3643084ee8ad22d9ea2adb13d65d4b6e18810113e4176b19d026a011957f8c7c
MD5 8b6d82123ba35fb2207a8c823d210739
BLAKE2b-256 138c513c431ec5dffccda87d66b778ac37c6607385124a10d6a7ccfcfa6099e9

See more details on using hashes here.

File details

Details for the file pyinstrument-4.4.0-cp311-cp311-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for pyinstrument-4.4.0-cp311-cp311-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 b2a6609ef74ad8ba292a11fbd975660bc86466c7eaab1ff11360d24e0300800b
MD5 e4437f618b4e38b1cef49165709a3c70
BLAKE2b-256 af50679c7bbd288aa2f143b0dbde8f3406ff4d688d62baa434de1f4a38503a46

See more details on using hashes here.

File details

Details for the file pyinstrument-4.4.0-cp311-cp311-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pyinstrument-4.4.0-cp311-cp311-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 1d2a1e53615c8ef210286e4d2d93be0d3e8296995b090df29a0b7ddeae5d874b
MD5 6a7207ec485fa51dba6911087c24c3ec
BLAKE2b-256 f880f320df4a42ba8f9bf1ec9f0f00262d3bc4837f9e724b33bab379a2eb34cb

See more details on using hashes here.

File details

Details for the file pyinstrument-4.4.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyinstrument-4.4.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 3c012422c851f0457c3cb82d8b1259d96fa0dcddc0f1e8bf4d97f0b2efe54485
MD5 fb74bf26019a9d1c46175651c985dc8c
BLAKE2b-256 a6684a8c9c5fb48d2b4103f7ef99195802ba4060c91224a18f3ebc4aff77c3b9

See more details on using hashes here.

File details

Details for the file pyinstrument-4.4.0-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyinstrument-4.4.0-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9a4a053cd67102c6fcc313366ea6be97cfce7eae2b9e57e62c9be8adbbdebc17
MD5 e7e580a0a8292477b24b69f118633520
BLAKE2b-256 2cd3e4711e0b1d72635c23beaff4e0113fa7339fb648af3f086351f9ff3e120c

See more details on using hashes here.

File details

Details for the file pyinstrument-4.4.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyinstrument-4.4.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 e4f5ad100710dda68f9f345961780bf4f0cbb9fd3e46295d099bb9ad65b179ea
MD5 0dca162e463371282848ef3f71131281
BLAKE2b-256 305e56810f719f9c59e6374b7947191a9fe5b8c6f43426e07829a81887d04419

See more details on using hashes here.

File details

Details for the file pyinstrument-4.4.0-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyinstrument-4.4.0-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 7c614e2c241fb558a25973019ff43ce027ba4958bcb87383f0b0789af9c4d03b
MD5 d5834fc0d370ae210b810a2da3ecccb9
BLAKE2b-256 4d2c24cd88e9a4b5eec92c349012620018b48feafcce765d2398ce862dd5a80e

See more details on using hashes here.

File details

Details for the file pyinstrument-4.4.0-cp311-cp311-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for pyinstrument-4.4.0-cp311-cp311-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 7db8cb55182883be48520eb915bd1769f176a4813ce0cc38243aa2d1182e7ce7
MD5 34343abbb7f83085da478d21216d081f
BLAKE2b-256 b8ab08377516c87f9dec3c267d2a3fc72e7c62c359a96e2f6a10a1cc77e6f115

See more details on using hashes here.

File details

Details for the file pyinstrument-4.4.0-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for pyinstrument-4.4.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 73edbce7fda1b3d8cab0b6c39c43b012167d783c072f40928600c3357d1a5dc5
MD5 6257f005256d2352874ee45b0106f349
BLAKE2b-256 1ec3d9f827c52654dddc1c0decb7682f4235fc630e5432c68801d896d9e1990b

See more details on using hashes here.

File details

Details for the file pyinstrument-4.4.0-cp310-cp310-win32.whl.

File metadata

File hashes

Hashes for pyinstrument-4.4.0-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 97cbeb5f5a048dc6eb047495f73db90c9e2ec97606e65298c7ea2c61fa52de38
MD5 af21c331a341b65d2daa74c2f4c2300d
BLAKE2b-256 660fe5e11f7fbab3d81def6b9c724397485ea42a2fa5bdcec2b6f7825cb2a729

See more details on using hashes here.

File details

Details for the file pyinstrument-4.4.0-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pyinstrument-4.4.0-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 b9cbaf3bcda5ad9af4c9a7bf4f1b8f15bb32c4cadf554d0a2c723892c898021b
MD5 8d40ae1298070cc45ca11ae5a12fea72
BLAKE2b-256 e1e778c720919079e3c48602338ed57597eb9c9ade7584ce7ed8ce6b6295165f

See more details on using hashes here.

File details

Details for the file pyinstrument-4.4.0-cp310-cp310-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for pyinstrument-4.4.0-cp310-cp310-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 375a340c3fbebd922a35b0834de1c82d1b4fea681df49f99729439a6cb5e6ad4
MD5 6c8a74d5b7da6f3db2bc2c6ddf7e4592
BLAKE2b-256 939348c2a4de0f5e67a7cb8bf05725738d9d2b195042b75a37039043052c112d

See more details on using hashes here.

File details

Details for the file pyinstrument-4.4.0-cp310-cp310-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pyinstrument-4.4.0-cp310-cp310-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 5a9aead0ca5579473f66fed4c449c693feee464802b5ba9b98772e64e02c575c
MD5 5bb1958f37f17baf5f8b67f88a6f9caa
BLAKE2b-256 697a6ad038e8c6d1edb8e8a64cea485ea63b6d21eddfdd36180d8e556d3d55c5

See more details on using hashes here.

File details

Details for the file pyinstrument-4.4.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyinstrument-4.4.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 d70fed48ddd0078e287fb580daaeede4d8703a9edc8bf4f703308a77920bac37
MD5 65e460283aa923365ddcb45575d2a0e8
BLAKE2b-256 5676427a1d2f68371cba5702188d1ec1c1229186f53c794e42df55664373b490

See more details on using hashes here.

File details

Details for the file pyinstrument-4.4.0-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyinstrument-4.4.0-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2f57b61d39d3b1a4d773da16baa8456aa66102d6016ce1f39817051550cbe47e
MD5 b7869619dc11791fc3563d8538c7a11c
BLAKE2b-256 291e23b335b6f7b9d10f888a094cf0eee0150d1c539aeae633aaaa25173ae1ce

See more details on using hashes here.

File details

Details for the file pyinstrument-4.4.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyinstrument-4.4.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 9fda1bd596e81ecd2b6a976eb9b930a757a5dd04071583d0141d059e34eed83f
MD5 44fa892daf88da36dfe0ccb14ac4f5f0
BLAKE2b-256 d59c8f99f5a01a8cc226bd6feb6360c069f60b323adf4bea4389b185a0c99c51

See more details on using hashes here.

File details

Details for the file pyinstrument-4.4.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyinstrument-4.4.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 e5f4d6e1c395f259f67a923a9c54dc3eaccd5f02540598da4f865c4bb3545762
MD5 c55a4f22a7a1f8a10b793dac34ca0692
BLAKE2b-256 3108ea1bda3053d85401ef12c1e2087b7aa99b1a39f841de366f5b9d751d24d5

See more details on using hashes here.

File details

Details for the file pyinstrument-4.4.0-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for pyinstrument-4.4.0-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 8874f8f58cfcb1ff134dc8e4a2b31ab9175adb271a4423596ed7ac8183592cf8
MD5 95030d58f684a8395b86faccebb1d25c
BLAKE2b-256 91d3ced421d0866d166102362e8bb6e90f4480aabfd0c0d7a482da8edad6546e

See more details on using hashes here.

File details

Details for the file pyinstrument-4.4.0-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for pyinstrument-4.4.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 a19784a898133b7e0ffe4489155bacd2d07ec48ea059f9bf50033dc2b814c273
MD5 095c66fad2ef1f54be878a35edd77e37
BLAKE2b-256 133a6a7d5ff1a366f16296cb9f4b53460e8592c4f98a0f5988eb58b1429f9a99

See more details on using hashes here.

File details

Details for the file pyinstrument-4.4.0-cp39-cp39-win32.whl.

File metadata

  • Download URL: pyinstrument-4.4.0-cp39-cp39-win32.whl
  • Upload date:
  • Size: 104.9 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.15

File hashes

Hashes for pyinstrument-4.4.0-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 e5583b0d23f87631af06bb9f3c184190c889c194b02553eed132de966324bdf9
MD5 f002975c9213fed9fd9c6896424234fe
BLAKE2b-256 ddcda08f5d63dce8fa7dde4374222f10d67cab4816aefcee45badc96ef8e1e32

See more details on using hashes here.

File details

Details for the file pyinstrument-4.4.0-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pyinstrument-4.4.0-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 9a13c75b24bf8eed5a4356ffa8a419cc534284a529f2b314f3e10275a820420f
MD5 0965c11c985634db8ca6987950dd48c7
BLAKE2b-256 6dc6efc282d60bc17b58ffb4247a416219ddcc5c37964b7fab16382cb2f4b152

See more details on using hashes here.

File details

Details for the file pyinstrument-4.4.0-cp39-cp39-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for pyinstrument-4.4.0-cp39-cp39-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 30f5ce299c3219559870117c5b0825f33243808be375be9c3525572ba050c2db
MD5 fbc890c9453a37e60a13209a724282f7
BLAKE2b-256 6bf70f3b636a96c775d81f63788a1da9a6bb374ca56bb2f817fb0da51b4dad00

See more details on using hashes here.

File details

Details for the file pyinstrument-4.4.0-cp39-cp39-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pyinstrument-4.4.0-cp39-cp39-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 4f07941bb5dd5cd730fc84eef6497ef9f0807c686e68d0c6b1f464589646a3b7
MD5 e118981d8039e7ba153cc49510fa05dd
BLAKE2b-256 0eda0396bfc726c988e8328a728c7fad3c731aba0f9034f04d753b3f2516364f

See more details on using hashes here.

File details

Details for the file pyinstrument-4.4.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyinstrument-4.4.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 bb89033e41e74dc2ac4fd882269e91ddf677588efa665d2be8b718e96ea4cec6
MD5 1c8ce5d51808676e0c69bb8c68827d06
BLAKE2b-256 def46a0f98ec6fbddb263f8f8579c51917ed3019a3ecf90e5f59b2d03bcdf762

See more details on using hashes here.

File details

Details for the file pyinstrument-4.4.0-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyinstrument-4.4.0-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 50727b686a0961a11eba2fe6205d0899f3479c983bcf34abb114d6da70bc1b93
MD5 4a2cffa6c6cb7b208d991a147823a9f9
BLAKE2b-256 68d2c356d1dfc9c76cd98272e146c5f1b7f5046557796a942795e277dcca93ab

See more details on using hashes here.

File details

Details for the file pyinstrument-4.4.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyinstrument-4.4.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 9b2bcd803d273c8addf01eaf75a42ae0a2a9196a58fb0ebb8d29be75abb88701
MD5 c2fa2c3a1ffc31b2e355c08663043572
BLAKE2b-256 123ea07bfe69cc7393fe7474dc1fd28b3f88f47fba4dce1d58f8ad0d24a1995e

See more details on using hashes here.

File details

Details for the file pyinstrument-4.4.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyinstrument-4.4.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ebc63b70845e3a44b673f7dcdc78ac2c475684db41b0402eea370f194da2a287
MD5 188ee25df6ce88c1a3d162e5d453e5be
BLAKE2b-256 22f5598de5847cc51430b73c64ae70215420ae7693a8a662ab661a65c46b5eaa

See more details on using hashes here.

File details

Details for the file pyinstrument-4.4.0-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for pyinstrument-4.4.0-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 a8afee175335005d2964848b77579bfc18f011ea74b59b79ab6d5b35433bf3e3
MD5 403275b00dfb2a3eec7d67f62da47cbf
BLAKE2b-256 698b8836309b67e95ade50289e0f54ea0b7799baac88097bdd2722a1d12a4328

See more details on using hashes here.

File details

Details for the file pyinstrument-4.4.0-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for pyinstrument-4.4.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 dd9625cf136eb6684d9ca555a5088f21a7ac6c6cb2ece3ae45d09772906ceba8
MD5 6084cf5934ac6064261be1506c759d99
BLAKE2b-256 5ce5d462d8442d987d5d838b47b335ed1793f6bbb2a66b28b95b83d6b031c8e1

See more details on using hashes here.

File details

Details for the file pyinstrument-4.4.0-cp38-cp38-win32.whl.

File metadata

  • Download URL: pyinstrument-4.4.0-cp38-cp38-win32.whl
  • Upload date:
  • Size: 104.7 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.15

File hashes

Hashes for pyinstrument-4.4.0-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 b50cf50513a5318738c3c7147f02596cda4891089acf2f627bb65954fc5bcbfd
MD5 3c3414b299090743228f15fa369ed778
BLAKE2b-256 a8768781ddf81be3448d1acef2fc2f1253d5849bf373f612b257eccbb268297b

See more details on using hashes here.

File details

Details for the file pyinstrument-4.4.0-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pyinstrument-4.4.0-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 9e7d1cc3affef4a7e4695bb87c6cfcd577e2dac508624a91481f24217ef78c57
MD5 0cf8b16bf97e30bd322324134d30598c
BLAKE2b-256 4185b55d9c261a6ed7f54ba8c50e994e41fea666970abbf7f7a5ff194c3d46b9

See more details on using hashes here.

File details

Details for the file pyinstrument-4.4.0-cp38-cp38-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for pyinstrument-4.4.0-cp38-cp38-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 09167ece8802bc03a63e97536dcefd9c1a340dae686f40914cf995099bc0d0af
MD5 157ed20a38fb6bf929b119c0bf73b8de
BLAKE2b-256 fd56869c62cca4e94b3826d160e195f95c2374eabb89d61944c4cddf0cb09f97

See more details on using hashes here.

File details

Details for the file pyinstrument-4.4.0-cp38-cp38-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pyinstrument-4.4.0-cp38-cp38-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 ffd9a9fa73fd83a40252430c6ebf8dfff7c668cc68eab4a92562b8b27c302598
MD5 57ba28e2e44a8e77c3efaaeb4143f3aa
BLAKE2b-256 1fa56b8efc4a4ce2cf2b25b64aa24ded8335ea75ec46a267da1deaf0b88d44c9

See more details on using hashes here.

File details

Details for the file pyinstrument-4.4.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyinstrument-4.4.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 59f5f479db277b3dbeb0c6843a7e9a38ee8b7c23d75b9ef764d96cb522d96212
MD5 d991f097a9ccf4f08835eec7c4daf11e
BLAKE2b-256 5dba9459a8b6a47dc993d10576f293ed327421d33a426b40f879270e1652e497

See more details on using hashes here.

File details

Details for the file pyinstrument-4.4.0-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyinstrument-4.4.0-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 bfc4e2fd670a570ea847f6897283d10d4b9606170e491f01b75488ed1aa37a81
MD5 14de099d2016d47f4ab35a2291e808a9
BLAKE2b-256 063d45626da96e797d3fe15e97c1f0dacb6a1c39a56a10772cb5af949d9a15c6

See more details on using hashes here.

File details

Details for the file pyinstrument-4.4.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyinstrument-4.4.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 ffeeaa0d036a8bef31da6fc13c4ea097160f913d86319897314113bb9271af4c
MD5 341f50f229dfecbfead84746ca76a59a
BLAKE2b-256 2cd3446710db3d2c8542ddc5ba580ab44648f1bf4e5f64f187a30cfc0ff8437b

See more details on using hashes here.

File details

Details for the file pyinstrument-4.4.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyinstrument-4.4.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 7526f0b1dab721ddc19920fa1f4eeaa5bcb658a4d18ac9c50868e84f911f794b
MD5 3bf17489ae0e671996dac2510e1ccb1f
BLAKE2b-256 5755ae6cf200ddd02566d112278ec4bb74b6eb4bc46a73dc079cfb09c0f96aa7

See more details on using hashes here.

File details

Details for the file pyinstrument-4.4.0-cp38-cp38-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for pyinstrument-4.4.0-cp38-cp38-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 a7c774c4b8df21664b082d3e72fa8cbc0631fe9bb222bb9d285ccfe9cd9b4909
MD5 e41e9ba6e8672d99d4443c6fd4c20371
BLAKE2b-256 8b80e084fedb962e7c3526efa2f25fe26cf06d1830e53f2e4cc648bc7686a989

See more details on using hashes here.

File details

Details for the file pyinstrument-4.4.0-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for pyinstrument-4.4.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 de83152bafc9eed4e5469e340b6002be825151f0654c32bbb9a3a7e31708d227
MD5 dab16421117af3a2294ce1275c78be9d
BLAKE2b-256 d7b50dc996ce5f23369a3668d890b236073a46ff2f890da096de2032c1bd79a3

See more details on using hashes here.

File details

Details for the file pyinstrument-4.4.0-cp37-cp37m-win32.whl.

File metadata

  • Download URL: pyinstrument-4.4.0-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 104.7 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.15

File hashes

Hashes for pyinstrument-4.4.0-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 2d131b98f116fb895d759dfb8c1078e0e9fa8987a9f44f566d29221545f75bd4
MD5 52c8372405fd6ede27665db2dc5befa0
BLAKE2b-256 ca0b282361502c25a575b62cbe325c9453dbad5a581becf56a34e49553c4942a

See more details on using hashes here.

File details

Details for the file pyinstrument-4.4.0-cp37-cp37m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pyinstrument-4.4.0-cp37-cp37m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 5e750fc3afb9acc288ad84b183a5ccd863e9185c435b445fcc62e0c133af9b7f
MD5 9f594f0aaa55fb3b92d426718bd090da
BLAKE2b-256 2c7e2fa443bc6636d1ff3a5327deed7c10d0fd35498688edebe62d85e5d41646

See more details on using hashes here.

File details

Details for the file pyinstrument-4.4.0-cp37-cp37m-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for pyinstrument-4.4.0-cp37-cp37m-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 e5233022ba511ef7ecfef2e07d162c0817048c995f0940f9aa2f6a1936afcb9c
MD5 95387713429b4c5bbd2c9728c43f180a
BLAKE2b-256 b4512f200641f5f93830d662062686e6ed2d0db993a50bd47cf6260eba76be6e

See more details on using hashes here.

File details

Details for the file pyinstrument-4.4.0-cp37-cp37m-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pyinstrument-4.4.0-cp37-cp37m-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 0bbd169b92147ec5d67ed160c300dda504059cfd81e953ed5b059e8ef92bb482
MD5 e62640ae56e4f7b214be9ed8d12f228e
BLAKE2b-256 5cd4954e686876510cdc5c17ba97e5933d66ba4b15078e7884d420d3481fbb77

See more details on using hashes here.

File details

Details for the file pyinstrument-4.4.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyinstrument-4.4.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 5491a5cb3ae5e88436d48b4b3de8328286e843e7307116dc2cca397c9c2ffe21
MD5 7f273f48201a0d4f952ad53c72658a8f
BLAKE2b-256 cd98e489db4b7ba5b6073df490d1288cf061913140b20f9846d7f1ffd21d55a3

See more details on using hashes here.

File details

Details for the file pyinstrument-4.4.0-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyinstrument-4.4.0-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b72bde0b1a03d1b2dc9b9d79546f551df6f67673cca816614e98ea0aebd3bc50
MD5 f058dff66ac03ab5135bc9c151f6fbc6
BLAKE2b-256 9b1d4d7e102eb9aa61c4460446c145d0b5c697a3b7351f8a77aca0a5f6060d77

See more details on using hashes here.

File details

Details for the file pyinstrument-4.4.0-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyinstrument-4.4.0-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 d66fcc94f0ebaab6bcbbdfa2482f833dd634352a20295616ea45286e990f7446
MD5 3bcb8d6fc546a64a396615deced52475
BLAKE2b-256 2928ee64c4b92216b43ca53d20174042ce5ddff0a42e6482a1bc45268e7277cb

See more details on using hashes here.

File details

Details for the file pyinstrument-4.4.0-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyinstrument-4.4.0-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 39584c0fec147e3bbfa7b28454332f9801af5f93331f4143f24a4b0f9e3cb470
MD5 89a38ca86db31f15d8217f7ae32434aa
BLAKE2b-256 833b57dbbf184e91d7df501c95eb926c30f890b118f3e92da2f49b164b0051b5

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page