Skip to main content

Call stack profiler for Python. Shows you why your code is slow!

Project description

pyinstrument

PyPI version .github/workflows/test.yml Build wheels

Documentation

Screenshot

Pyinstrument is a Python profiler. A profiler is a tool to help you optimize your code - make it faster. To get the biggest speed increase you should focus on the slowest part of your program. Pyinstrument helps you find it!

☕️ Not sure where to start? Check out this video tutorial from calmcode.io!

Installation

pip install pyinstrument

Pyinstrument supports Python 3.7+.

To run Pyinstrument from a git checkout, there's a build step. Take a look at Contributing for more info.

Documentation

To learn how to use pyinstrument, or to check the reference, head to the documentation.

Known issues

  • Profiling code inside a Docker container can cause some strange results, because the gettimeofday syscall that pyinstrument uses is slow in that environment. See #83
  • When using pyinstrument script.py where script.py contains a class serialized with pickle, you might encounter errors because the serialisation machinery doesn't know where __main__ is. See this issue for workarounds

Changelog

v4.6.0

12 October 2023

  • Adds a feature -c, which allows profiling code directly from the command line, like python -c. (#271)
  • Adds a convenience method Profiler.write_html, for writing HTML output to a file directly. (#266)

v4.5.3

7 September 2023

  • Fix a problem in the packaging process that prevented upload to PyPI

v4.5.2

1 September 2023

  • Show the program name in the header of the HTML output (#260)
  • Improve program name capture through resilience to other programs modifying sys.argv (#258)
  • Add support for Python 3.12 (#246)

v4.5.1

22 July 2023

  • Fix a bug that caused [X frames hidden] in the output when frames were deleted due to __tracebackhide__ (#255)
  • Fix a bug causing built-in code to display the filepath None in the console output (#254)
  • Some docs improvements (#251)

v4.5.0

5 June 2023

  • Adds a flat mode to the console renderer, which can be enabled by passing -p flat on the command line. This mode shows the heaviest frame as measured by self-time, which can be useful in some codebases. (#240)
  • Adds the ability to save pstats files. This is the file format used by cprofile in the stdlib. It's less detailed than pyinstrument profiles, but it's compatible with more tools. (#236)
  • Fixes a detail of the --show-all option - pyinstrument will no longer remove Python-internal frames when this option is supplied. (#239)
  • Internally to the HTML renderer, it now uses Svelte to render the frontend, meaning profile HTML files bundle less javascript and so are smaller. (#222)

v4.4.0

5 November 2022

  • Adds the class name to methods in the console & HTML outputs (#203)
  • Fix a bug that caused pyinstrument machinery to appear at the start of a profile (#215)
  • Frames that set a __traceback_hide__ local variable will now be removed from the output (#217)
  • Jupyter/IPython magic now supports async/await, if you run with a --async_mode=enabled flag. (#212)
  • Fix a crash when more than one root frame is captured in a thread - this can happen with gevent.
  • A big refactor to the backend, allowing more than just static information to be captured. This currently is just powering the class name feature, but more is to come!

v4.3.0

21 August 2022

  • Adds buttons in the HTML output to switch between absolute and proportional (percentage) time.
  • Adds a command line flag --interval (seconds, default 0.001) to change the interval that pyinstrument samples a program. This is useful for long-running programs, where increasing the interval reduces the memory overhead.
  • Includes wheels for CPython 3.11.

v4.2.0

  • Adds a command-line option -p --render-option that allows arbitrary setting of render options. This lets you set options like filter_threshold from the command line, by doing something like pyinstrument -p processor_options.filter_threshold=0.

    Here's the help output for the option:

      -p RENDER_OPTION, --render-option=RENDER_OPTION
                        options to pass to the renderer, in the format
                        'flag_name' or 'option_name=option_value'. For
                        example, to set the option 'time', pass '-p
                        time=percent_of_total'. To pass multiple options, use
                        the -p option multiple times. You can set processor
                        options using dot-syntax, like '-p
                        processor_options.filter_threshold=0'. option_value is
                        parsed as a JSON value or a string.
    
  • Adds the ability to view times in the console output as percentages, rather than absolute times. Use the ConsoleRenderer option time='percent_of_total', or on the command line, use -p, like pyinstrument -p time=percent_of_total.

  • Adds command line options for loading and saving pyinstrument sessions. You can save the raw data for a pyinstrument session with -r session, like pyinstrument -r session -o session.pyisession myscript.py. Loading is via --load, e.g. pyinstrument --load session.pyisession.

  • Command line output format is inferred from the -o output file extension. So if you do pyinstrument -o profile.html myscript.py, you don't need to supply -r html, pyinstrument will automatically use the HTML renderer. Or if you do pyinstrument -o profile.pyisession myscript.py, it will save a raw session object.

  • Adds usage examples for FastAPI and pytest to the documentation.

  • Fixes a bug causing NotImplementedError when using async_mode=strict.

  • Adds support for Python 3.11

v4.1.1

  • Fixed an issue causing PYINSTRUMENT_PROFILE_DIR_RENDERER to output the wrong file extension when used with the speedscope renderer.

v4.1.0

  • You can now use pyinstrument natively in an IPython notebook! Just use %load_ext pyinstrument at the top of your notebook, and then %%pyinstrument in the cell you want to profile.
  • Added support for the speedscope format. This provides a way to view interactive flamecharts using pyinstrument. To use, profile with pyinstrument -r speedscope, and upload to the speedscope web app.
  • You can now configure renderers for the Django middleware file output, using the PYINSTRUMENT_PROFILE_DIR_RENDERER option.
  • Added wheels for Linux aarch64 (64-bit ARM).

v4.0.4

  • Fix a packaging issue where a package called 'test' was installed alongside pyinstrument
  • Use more modern C APIs to resolve deprecation warnings on Python 3.10.
  • Minor docs fixes

v4.0.3

  • CPython 3.10 support
  • Improve error messages when trying to use Profiler from multiple threads
  • Fix crash when rendering sessions that contain a module in a FrameGroup

v4.0.2

  • Fix some packaging issues

v4.0.0

  • Async support! Pyinstrument now detects when an async task hits an await, and tracks time spent outside of the async context under this await.

    So, for example, here's a simple script with an async task that does a sleep:

    import asyncio
    from pyinstrument import Profiler
    
    async def main():
        p = Profiler(async_mode='disabled')
    
        with p:
            print('Hello ...')
            await asyncio.sleep(1)
            print('... World!')
    
        p.print()
    
    asyncio.run(main())
    

    Before Pyinstrument 4.0.0, we'd see only time spent in the run loop, like this:

      _     ._   __/__   _ _  _  _ _/_   Recorded: 18:33:03  Samples:  2
     /_//_/// /_\ / //_// / //_'/ //     Duration: 1.006     CPU time: 0.001
    /   _/                      v3.4.2
    
    Program: examples/async_example_simple.py
    
    1.006 _run_once  asyncio/base_events.py:1784
    └─ 1.005 select  selectors.py:553
          [3 frames hidden]  selectors, <built-in>
             1.005 kqueue.control  <built-in>:0
    

    Now, with pyinstrument 4.0.0, we get:

      _     ._   __/__   _ _  _  _ _/_   Recorded: 18:30:43  Samples:  2
     /_//_/// /_\ / //_// / //_'/ //     Duration: 1.007     CPU time: 0.001
    /   _/                      v4.0.0
    
    Program: examples/async_example_simple.py
    
    1.006 main  async_example_simple.py:4
    └─ 1.005 sleep  asyncio/tasks.py:641
          [2 frames hidden]  asyncio
             1.005 [await]
    

    For more information, check out the async profiling documentation and the Profiler.async_mode property.

  • Pyinstrument has a documentation site, including full Python API docs!

v3.4.2

  • Fix a bug that caused --show, --show-regex, --show-all to be ignored on the command line.

v3.4.1

  • Under-the-hood modernisation

v3.4.0

  • Added timeline option (boolean) to Profiler methods output_html() and open_in_browser().

v3.3.0

  • Fixed issue with pyinstrument -m module, where pyinstrument wouldn't find modules in the current directory.
  • Dropped support for Python 2.7 and 3.5. Old versions will remain available on PyPI, and pip should choose the correct one automatically.

v3.2.0

  • Added the ability to track time in C functions. Minor note - Pyinstrument will record time spent C functions as 'leaf' functions, due to a limitation in how Python records frames. Python -> C -> Python is recorded as Python -> Python, but Python -> Python -> C will be attributed correctly. (#103)

v3.1.2

  • Fix <__array_function__ internals> frames appearing as app code in reports

v3.1.1

  • Added support for timeline mode on HTML and JSON renderers
  • Released as a tarball as well as a universal wheel

v3.1.0

  • Added PYINSTRUMENT_SHOW_CALLBACK option on the Django middleware to add a condition to showing the profile (could be used to run pyinstrument on a live server!)
  • Fixed bug in the Django middleware where file would not be written because of a unicode error

v3.0.3

  • Fixed bug with the Django middleware on Windows where profiling would fail because we were trying to put an illegal character '?' in the profile path. (#66)

v3.0.2

  • Add --show and --show-regex options, to mark certain files to be displayed. This helps to profile inside specific modules, while hiding others. For example, pyinstrument --show '*/sympy/*' script.py.

v3.0.1

  • Fix #60: pass all arguments after -m module_name to the called module
  • Fix crash during HTML/JSON output when no frames were captured.

v3.0.0

  • Pyinstrument will now hide traces through libraries that you're using by default. So instead of showing you loads of frames going through the internals of something external e.g. urllib, it lets you focus on your code.

    Before After
    image image

    To go back to the old behaviour, use --show-all on the command line.

  • 'Entry' frames of hidden groups are shown, so you know which call is the problem

  • Really slow frames in the groups are shown too, e.g. the 'read' call on the socket

  • Application code is highlighted in the console

  • Additional metrics are shown at the top of the trace - timestamp, number of samples, duration, CPU time

  • Hidden code is controlled by the --hide or --hide-regex options - matching on the path of the code files.

      --hide=EXPR           glob-style pattern matching the file paths whose
                            frames to hide. Defaults to '*/lib/*'.
      --hide-regex=REGEX    regex matching the file paths whose frames to hide.
                            Useful if --hide doesn't give enough control.
    
  • Outputting a timeline is supported from the command line.

      -t, --timeline        render as a timeline - preserve ordering and don't
                            condense repeated calls
    
  • Because there are a few rendering options now, you can load a previous profiling session using --load-prev - pyinstrument keeps the last 10 sessions.

  • Hidden groups can also call back into application code, that looks like this:

    image

  • (internal) When recording timelines, frame trees are completely linear now, allowing for the creation of super-accurate frame charts.

  • (internal) The HTML renderer has been rewritten as a Vue.js app. All the console improvements apply to the HTML output too, plus it's interactive.

  • (internal) A lot of unit and integration tests added!

Yikes! See #49 for the gory details. I hope you like it.

v2.3.0

  • Big refactor!
    • Recorders have been removed. The frame recording is now internal to the Profiler object. This means the 'frame' objects are more general-purpose, which paves the way for...
    • Processors! These are functions that mutate the tree to sculpt the output. They are used by the renderers to filter the output to the correct form. Now, instead of a time-aggregating recorder, the profiler just uses timeline-style recording (this is lower-overhead anyway) and the aggregation is done as a processing step.
    • The upshot of this is that it's now way easier to alter the tree to filter stuff out, and do more advanced things like combining frames that we don't care about. More features to come that use this in v3.0!
  • Importlib frames are removed - you won't see them at all. Their children are retained, so imports are just transparent.
  • Django profile file name is now limited to a hundred of characters (#50)
  • Fix bug with --html option (#53)
  • Add --version command line option

v2.2.1

  • Fix crash when using on the command line.

v2.2.0

  • Added support for JSON output. Use pyinstrument --renderer=json scriptfile.py. PR

  • @iddan has put together an interactive viewer using the JSON output!

    image

  • When running pyinstrument --html and you don't pipe the output to a file, pyinstrument will write the console output to a temp file and open that in a browser.

v2.1.0

  • Added support for running modules with pyinstrument via the command line. The new syntax is the -m flag e.g. pyinstrument -m module_name! PR

v2.0.4

v2.0.3

  • Pyinstrument can now be used in a with block.

    For example:

    profiler = pyinstrument.Profiler()
    with profiler:
        # do some work here...
    print(profiler.output_text())
    
  • Middleware fix for older versions of Django

v2.0.2

  • Fix for max recursion error when used to profile programs with a lot of frames on the stack.

v2.0.1

  • Ensure license is included in the sdist.

v2.0.0

  • Pyinstrument uses a new profiling mode. Rather than using signals, pyintrument uses a new statistical profiler built on PyEval_SetProfile. This means no more main thread restriction, no more IO errors when using Pyinstrument, and no need for a separate more 'setprofile' mode!

  • Renderers. Users can customize Pyinstrument to use alternative renderers with the renderer argument on Profiler.output(), or using the --renderer argument on the command line.

  • Recorders. To support other use cases of Pyinstrument (e.g. flame charts), pyinstrument now has a 'timeline' recorder mode. This mode records captured frames in a linear way, so the program execution can be viewed on a timeline.

v0.13

  • pyinstrument command. You can now profile python scripts from the shell by running $ pyinstrument script.py. This is now equivalent to python -m pyinstrument. Thanks @asmeurer!

v0.12

  • Application code is highlighted in HTML traces to make it easier to spot

  • Added PYINSTRUMENT_PROFILE_DIR option to the Django interface, which will log profiles of all requests to a file the specified folder. Useful for profiling API calls.

  • Added PYINSTRUMENT_USE_SIGNAL option to the Django interface, for use when signal mode presents problems.

Contributing

To setup a dev environment:

virtualenv --python=python3 env
. env/bin/activate
pip install --upgrade pip
pip install -r requirements-dev.txt
pre-commit install --install-hooks

To get some sample output:

pyinstrument examples/wikipedia_article_word_count.py

To run the tests:

pytest

To run linting checks locally:

pre-commit run --all-files

Some of the pre-commit checks, like isort or black, will auto-fix the problems they find. So if the above command returns an error, try running it again, it might succeed the second time :)

Running all the checks can be slow, so you can also run checks individually, e.g., to format source code that fails isort or black checks:

pre-commit run --all-files isort
pre-commit run --all-files black

To diagnose why pyright checks are failing:

pre-commit run --all-files pyright

The HTML renderer Vue.js app

The HTML renderer works by embedding a JSON representation of the sample with a Javascript 'bundle' inside an HTML file that can be viewed in any web browser.

To edit the html renderer style, do:

cd html_renderer
npm ci
npm run serve

When launched without a top-level window.profileSession object, it will fetch a sample profile so you can work with it.

To compile the JS app and bundle it back into the pyinstrument python tool:

bin/build_js_bundle.py [--force]

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyinstrument-4.6.0.tar.gz (128.0 kB view details)

Uploaded Source

Built Distributions

pyinstrument-4.6.0-cp312-cp312-win_amd64.whl (89.8 kB view details)

Uploaded CPython 3.12 Windows x86-64

pyinstrument-4.6.0-cp312-cp312-win32.whl (89.2 kB view details)

Uploaded CPython 3.12 Windows x86

pyinstrument-4.6.0-cp312-cp312-musllinux_1_1_x86_64.whl (110.8 kB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ x86-64

pyinstrument-4.6.0-cp312-cp312-musllinux_1_1_i686.whl (109.9 kB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ i686

pyinstrument-4.6.0-cp312-cp312-musllinux_1_1_aarch64.whl (110.4 kB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ ARM64

pyinstrument-4.6.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (106.6 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

pyinstrument-4.6.0-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (106.4 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

pyinstrument-4.6.0-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (105.3 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

pyinstrument-4.6.0-cp312-cp312-macosx_10_9_x86_64.whl (86.5 kB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

pyinstrument-4.6.0-cp312-cp312-macosx_10_9_universal2.whl (92.1 kB view details)

Uploaded CPython 3.12 macOS 10.9+ universal2 (ARM64, x86-64)

pyinstrument-4.6.0-cp311-cp311-win_amd64.whl (89.8 kB view details)

Uploaded CPython 3.11 Windows x86-64

pyinstrument-4.6.0-cp311-cp311-win32.whl (89.1 kB view details)

Uploaded CPython 3.11 Windows x86

pyinstrument-4.6.0-cp311-cp311-musllinux_1_1_x86_64.whl (109.1 kB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

pyinstrument-4.6.0-cp311-cp311-musllinux_1_1_i686.whl (108.8 kB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ i686

pyinstrument-4.6.0-cp311-cp311-musllinux_1_1_aarch64.whl (109.0 kB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ ARM64

pyinstrument-4.6.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (105.1 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

pyinstrument-4.6.0-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (104.7 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

pyinstrument-4.6.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (103.8 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

pyinstrument-4.6.0-cp311-cp311-macosx_10_9_x86_64.whl (86.5 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

pyinstrument-4.6.0-cp311-cp311-macosx_10_9_universal2.whl (92.0 kB view details)

Uploaded CPython 3.11 macOS 10.9+ universal2 (ARM64, x86-64)

pyinstrument-4.6.0-cp310-cp310-win_amd64.whl (89.9 kB view details)

Uploaded CPython 3.10 Windows x86-64

pyinstrument-4.6.0-cp310-cp310-win32.whl (89.2 kB view details)

Uploaded CPython 3.10 Windows x86

pyinstrument-4.6.0-cp310-cp310-musllinux_1_1_x86_64.whl (110.1 kB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

pyinstrument-4.6.0-cp310-cp310-musllinux_1_1_i686.whl (109.3 kB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ i686

pyinstrument-4.6.0-cp310-cp310-musllinux_1_1_aarch64.whl (109.8 kB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ ARM64

pyinstrument-4.6.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (106.8 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

pyinstrument-4.6.0-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (106.7 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

pyinstrument-4.6.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (105.8 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

pyinstrument-4.6.0-cp310-cp310-macosx_10_9_x86_64.whl (86.7 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

pyinstrument-4.6.0-cp310-cp310-macosx_10_9_universal2.whl (92.5 kB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64)

pyinstrument-4.6.0-cp39-cp39-win_amd64.whl (89.9 kB view details)

Uploaded CPython 3.9 Windows x86-64

pyinstrument-4.6.0-cp39-cp39-win32.whl (89.2 kB view details)

Uploaded CPython 3.9 Windows x86

pyinstrument-4.6.0-cp39-cp39-musllinux_1_1_x86_64.whl (109.7 kB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

pyinstrument-4.6.0-cp39-cp39-musllinux_1_1_i686.whl (108.9 kB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ i686

pyinstrument-4.6.0-cp39-cp39-musllinux_1_1_aarch64.whl (109.5 kB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ ARM64

pyinstrument-4.6.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (106.5 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

pyinstrument-4.6.0-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (106.4 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

pyinstrument-4.6.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (105.5 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

pyinstrument-4.6.0-cp39-cp39-macosx_10_9_x86_64.whl (86.7 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

pyinstrument-4.6.0-cp39-cp39-macosx_10_9_universal2.whl (92.5 kB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

pyinstrument-4.6.0-cp38-cp38-win_amd64.whl (89.7 kB view details)

Uploaded CPython 3.8 Windows x86-64

pyinstrument-4.6.0-cp38-cp38-win32.whl (89.0 kB view details)

Uploaded CPython 3.8 Windows x86

pyinstrument-4.6.0-cp38-cp38-musllinux_1_1_x86_64.whl (109.4 kB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

pyinstrument-4.6.0-cp38-cp38-musllinux_1_1_i686.whl (108.7 kB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ i686

pyinstrument-4.6.0-cp38-cp38-musllinux_1_1_aarch64.whl (109.2 kB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ ARM64

pyinstrument-4.6.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (105.7 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

pyinstrument-4.6.0-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (105.5 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

pyinstrument-4.6.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (104.4 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

pyinstrument-4.6.0-cp38-cp38-macosx_10_9_x86_64.whl (86.4 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

pyinstrument-4.6.0-cp38-cp38-macosx_10_9_universal2.whl (91.8 kB view details)

Uploaded CPython 3.8 macOS 10.9+ universal2 (ARM64, x86-64)

pyinstrument-4.6.0-cp37-cp37m-win_amd64.whl (89.7 kB view details)

Uploaded CPython 3.7m Windows x86-64

pyinstrument-4.6.0-cp37-cp37m-win32.whl (89.0 kB view details)

Uploaded CPython 3.7m Windows x86

pyinstrument-4.6.0-cp37-cp37m-musllinux_1_1_x86_64.whl (108.7 kB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ x86-64

pyinstrument-4.6.0-cp37-cp37m-musllinux_1_1_i686.whl (108.3 kB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ i686

pyinstrument-4.6.0-cp37-cp37m-musllinux_1_1_aarch64.whl (108.6 kB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ ARM64

pyinstrument-4.6.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (104.2 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

pyinstrument-4.6.0-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (103.9 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

pyinstrument-4.6.0-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (103.0 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

pyinstrument-4.6.0-cp37-cp37m-macosx_10_9_x86_64.whl (86.3 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file pyinstrument-4.6.0.tar.gz.

File metadata

  • Download URL: pyinstrument-4.6.0.tar.gz
  • Upload date:
  • Size: 128.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.18

File hashes

Hashes for pyinstrument-4.6.0.tar.gz
Algorithm Hash digest
SHA256 3e509e879c853dbc5fdc1757f0cfdbf8bee899c80f53d504a7df28898f0fa8ed
MD5 21c475ee9611eb39917333bc651c1856
BLAKE2b-256 0361eafcc1fefce7b89dab203501a2ae587f06b65ea8a9b458f7d845194239eb

See more details on using hashes here.

File details

Details for the file pyinstrument-4.6.0-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for pyinstrument-4.6.0-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 9116154446b9999f6524e9db29310aee6476a5a471c276928f2b46b6655a2dcc
MD5 f1575ad37735efb78e4abd9b9b9a689a
BLAKE2b-256 99cee09f0acd65e1654959d5bbf872cd7dabe15cf145758c1806122d9ab9c781

See more details on using hashes here.

File details

Details for the file pyinstrument-4.6.0-cp312-cp312-win32.whl.

File metadata

File hashes

Hashes for pyinstrument-4.6.0-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 a498c82d93621c5cf736e4660142ac0c3bbcb7b059bcbd4278a6364037128656
MD5 7cbbf272143ac6bba548c2c3cdc43e41
BLAKE2b-256 f6b26ac1da7305f368f41552fbd5dc3d0a90dd9dc5976331c4650b731128f222

See more details on using hashes here.

File details

Details for the file pyinstrument-4.6.0-cp312-cp312-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pyinstrument-4.6.0-cp312-cp312-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 23a3b21373e0c8bf0d00dda79989fcab0bb1d30094f7b210d40d2226fe20e141
MD5 b0a3c6ec3ef2cef647175005a2c56074
BLAKE2b-256 d04d530475b91bd393024401514b9cb6dcfbe35d4cc3d293c9933bd4227890f8

See more details on using hashes here.

File details

Details for the file pyinstrument-4.6.0-cp312-cp312-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for pyinstrument-4.6.0-cp312-cp312-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 d86fea6ce117bcff642e24208eb573c00d78b4c2934eb9bd5f915751980cc9bd
MD5 02099ff7e8b03f39a931cbf94fc0c28e
BLAKE2b-256 9c7195d9cf13294b6437c97b399d29398cdd9321987ecbab77c0c3e991170d5a

See more details on using hashes here.

File details

Details for the file pyinstrument-4.6.0-cp312-cp312-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pyinstrument-4.6.0-cp312-cp312-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 08fbc75d3615be6259b7af0c173c7bc48acb6e7bd758678d54eb411ba2903052
MD5 1c8b8a4fa4f6fb0dd5164c883bc687f4
BLAKE2b-256 ca3c8bba5e07c1118c63a0eeff5d4202ff8ee39722d89ab9beaf69c11a7ea2ab

See more details on using hashes here.

File details

Details for the file pyinstrument-4.6.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyinstrument-4.6.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 b6ab698400e8401597e39c4816efa247f2b98c9b4e59e3ec25d534ae6887bd93
MD5 0d219d62b3b02cecb19f98ff51892080
BLAKE2b-256 8dc08ab41abb50a23771a58706eee2b381dcdbf46876e7e1d7634e1955220d92

See more details on using hashes here.

File details

Details for the file pyinstrument-4.6.0-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyinstrument-4.6.0-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8adc4f87d4289c1f04f19451b5133b8e307bd9b08c364c48e007ba663fefbf1b
MD5 eadfaaa307b8c43d6bc5a75d0e271772
BLAKE2b-256 6e1f5349b4e1f51692e47715d3e90e2e8ee89c4a12a92f729229a2a63686c34f

See more details on using hashes here.

File details

Details for the file pyinstrument-4.6.0-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyinstrument-4.6.0-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 de1a36a083b324dafe5e2880e5e04267a1983beb027f12c3dc361ddbe3acf9af
MD5 81509f2e0209a09a8bea46b301fbc45e
BLAKE2b-256 347d26918321fb86bad91596b9c986d9730a94361962c53ec406d390275f58c8

See more details on using hashes here.

File details

Details for the file pyinstrument-4.6.0-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyinstrument-4.6.0-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 b74745f1d22133da8d4a38dd0c78c02c00154a5b7683bdd5df56a7c7705a979b
MD5 c24d9659b24e4fc609f1d1a383de8630
BLAKE2b-256 46ba9ac085b63ad1d4a4381fac3d5043eb7eef97404160fcb5003dcb15044b8d

See more details on using hashes here.

File details

Details for the file pyinstrument-4.6.0-cp312-cp312-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for pyinstrument-4.6.0-cp312-cp312-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 3d4bed520c0f689a75bca4951f6b7fbad96851e8461086c98e03eb726f8a412a
MD5 c4269f6b233a30915a631eaf7c99659e
BLAKE2b-256 44cc6c87ba92e39de68015f3c7c962637fda706a9ff8229386dc9bba8548da36

See more details on using hashes here.

File details

Details for the file pyinstrument-4.6.0-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for pyinstrument-4.6.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 ecd8cf03b04dc1b7f151896228993c6aa0fa897cdd517ea127465bc1c826c5b5
MD5 70a3fd2731a461e2ae4f95ab4d698a14
BLAKE2b-256 f01baee3deb83878ba1fd581c8e86f9919dff4e8493bd70909d9d647cd910782

See more details on using hashes here.

File details

Details for the file pyinstrument-4.6.0-cp311-cp311-win32.whl.

File metadata

File hashes

Hashes for pyinstrument-4.6.0-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 d20b5cf79bca1b3d425a7362457621741393b1d5ce2d920583541b947bc8a368
MD5 d284aa59200df808284c86065ee668be
BLAKE2b-256 f0f4b704bbceece3d0bc93dbf7f45031b3aadf462fb39f7d9364eb06bee18f47

See more details on using hashes here.

File details

Details for the file pyinstrument-4.6.0-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pyinstrument-4.6.0-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 611c6cd33f42f19e46d99eeef3b84a47d33fe34cdb0ce6e3635d2ee5038706a3
MD5 f66b44c3797929f14be694f490aac810
BLAKE2b-256 b56a00ecde17f1ea338d50c9bcc743ca962f3e152f24818e28ca6a2290c797b4

See more details on using hashes here.

File details

Details for the file pyinstrument-4.6.0-cp311-cp311-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for pyinstrument-4.6.0-cp311-cp311-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 8ccd1f5b4ad35c734dcf2d08d80b5b37205b4e84aa71fe76f95e43bd30c5eef9
MD5 27f6a3eb4bb297fa9b88dfcb09c04044
BLAKE2b-256 6cc10c6efba9f3d35fb899b1707a0a1cb483fe5fbc43492297e47a1356c1a99c

See more details on using hashes here.

File details

Details for the file pyinstrument-4.6.0-cp311-cp311-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pyinstrument-4.6.0-cp311-cp311-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 514a0ced357ff400988f599b0294d05e3b68468f9ab876f204bf12765f7fdb1b
MD5 eb06e561f6025c1c6ac18b68e6d5e687
BLAKE2b-256 06a8e4cad65bb546b8feb3f2cbd6356c86e947ef02174cc9d7253a55a1f1b043

See more details on using hashes here.

File details

Details for the file pyinstrument-4.6.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyinstrument-4.6.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 5992748a74ec7ff445e4b56b5e316673c34b6cdbd3755111f7c023d8a141f001
MD5 d577c4cb0f432b3b7f16daa7a51cc455
BLAKE2b-256 58a7685f3401d6b342e8fd549674fce21bee5c3e831a46278521516b43678a97

See more details on using hashes here.

File details

Details for the file pyinstrument-4.6.0-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyinstrument-4.6.0-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 674868ebc3663b01d7d059a6f5cdeff6f18b49e217617720a5d645a6b55ead03
MD5 d2073ba5f499a41bc448683617f08e04
BLAKE2b-256 7d4c1dd2270144655165a3c3be6c38b8d56ccdbf44a18510906fe3d4f81b701c

See more details on using hashes here.

File details

Details for the file pyinstrument-4.6.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyinstrument-4.6.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 bb1ba76c4e912cae159ab9729c7b31bb6d7fe8ed1f0fafce74484a4bb159c240
MD5 4ade6904315484a9589ab3462f9473de
BLAKE2b-256 f0d65a2419b6940b8ca137d5e186f5a7e18a41aafdb9d7333b4e43f969d15370

See more details on using hashes here.

File details

Details for the file pyinstrument-4.6.0-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyinstrument-4.6.0-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 0c69ab570609ac93b5f4ab2e5ccbf8add4f69a962b06307eea66ba65b5ad9d38
MD5 e5bcda2d981189cfcdfce349a023c31a
BLAKE2b-256 73f5176acee250c2c5fa4067bb3fac8b0b45ca9147414cb7e4aae5e6fd11898c

See more details on using hashes here.

File details

Details for the file pyinstrument-4.6.0-cp311-cp311-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for pyinstrument-4.6.0-cp311-cp311-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 beaaa3b647b3a4cbd34b71eacaa31e3eb90e1bf53e15ada3ac7e9df09d737239
MD5 11fefd3bd1ca13b2c979a5d5462c469e
BLAKE2b-256 4049a9420161b34b54b8ce3c23179d371f732a731a20ded0753bf045ea280a02

See more details on using hashes here.

File details

Details for the file pyinstrument-4.6.0-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for pyinstrument-4.6.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 d9623fc3fde47ae90ad5014737e37034b4abc3fbfb455b7b56cc095f9037d5af
MD5 174db8b8458df868e47dbfb545905ad9
BLAKE2b-256 7d522a3b9603d81cd104df884f7cb6ff0ae47a8292d5fbfa26d26bf00742d647

See more details on using hashes here.

File details

Details for the file pyinstrument-4.6.0-cp310-cp310-win32.whl.

File metadata

File hashes

Hashes for pyinstrument-4.6.0-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 40e3656e6ace5a140880bd980a25f6a356c094c36e28ed1bf935d7349a78b1b6
MD5 6f629f6f9c3c0dc85cdfcc5742024eed
BLAKE2b-256 5f5a463965b44de4273fd337a815b8c0428d03445fb612b9bbdcc7221ea64956

See more details on using hashes here.

File details

Details for the file pyinstrument-4.6.0-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pyinstrument-4.6.0-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 5cd8ab30c8dcd1511e9b3b98f601f17f2c5c9df1d28f8298d215c63d68919bdc
MD5 40e42364cde460ad56d197e10dcf49c1
BLAKE2b-256 94f84c841ffb53b2093ecd3fc5172065707fc041ea2821d61b402dff93859c80

See more details on using hashes here.

File details

Details for the file pyinstrument-4.6.0-cp310-cp310-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for pyinstrument-4.6.0-cp310-cp310-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 ecc106213146dd90659a1483047b3a1c2e174fb190c0e109234e524a4651e377
MD5 c044424b14046317d03d64adb7184676
BLAKE2b-256 bc35f39f63629c9ba8d982177006bda7b1af11cbbf06b8ae8ad063ce38614731

See more details on using hashes here.

File details

Details for the file pyinstrument-4.6.0-cp310-cp310-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pyinstrument-4.6.0-cp310-cp310-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 288ea44da6333dacc77b4ba2149dba3dc1e9fbbebd3d5dc51a66c20839d80ef3
MD5 6687ce825c7ffd3e118eea85a24e2a7c
BLAKE2b-256 b601e1f8e05bd8faa56f3c21f64d396254fa1715f10ce038f20779a52d5d409b

See more details on using hashes here.

File details

Details for the file pyinstrument-4.6.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyinstrument-4.6.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 daba103955d0d0b37b8bc20a4e8cc6477e839ce5984478fcf3f7cee8318e9636
MD5 69c19e961e31b9d372a9865f40ab902c
BLAKE2b-256 21b467cbd0649d776143f22a79894a6b7f6109dd932bc01794c38e9f968f7e7f

See more details on using hashes here.

File details

Details for the file pyinstrument-4.6.0-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyinstrument-4.6.0-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 01009a7b58a6f11bf5560c23848ea2881acac974b0841fe5d365ef154baabd6f
MD5 a4a38db40889401e110ede02f3445f40
BLAKE2b-256 5eefac1400c5743c2bfa906e52ae5ca1ad155734e5fc80922c8ac580006f874d

See more details on using hashes here.

File details

Details for the file pyinstrument-4.6.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyinstrument-4.6.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 d93451e9c7650629b0bc12caa7390f81d1a15835c07f7dc170e953d4684ed1e7
MD5 a3b536c225c4b2885ecf38abf238dad7
BLAKE2b-256 061363c5ec36ce2ea8ddadf1954ab1a0c813c42c96eaac84967237ccf7e110a1

See more details on using hashes here.

File details

Details for the file pyinstrument-4.6.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyinstrument-4.6.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 18479ffa0c922695ba2befab29521b62bfe75debef48d818cea46262cee48a1e
MD5 b61ef1061c251728bbe7257b8a45f88c
BLAKE2b-256 cbbf540d3a73c58249ce06e576ddcb179adb08a75e44e6bfb5d86d0a139eb20f

See more details on using hashes here.

File details

Details for the file pyinstrument-4.6.0-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for pyinstrument-4.6.0-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 679b5397e3e6c0d6f56df50ba8c683543df4f1f7c1df2e2eb728e275bde2c85b
MD5 8ac56843d68a2ed8211a1f9d8ec7b658
BLAKE2b-256 e04fc363ba353f552572ffb88ae420b1837fa8fb2a15b9203ed995bc1e007283

See more details on using hashes here.

File details

Details for the file pyinstrument-4.6.0-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for pyinstrument-4.6.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 8a6d2e5c15f989629fac41536ec2ca1fe81359fadf4dadf2ff24fe96b389f6df
MD5 ea03c1f6c0699b83854c43c695a2a5e8
BLAKE2b-256 a9b6645c68cb25e6a48758d95ffd978bbc23e3130d8ec2e5fbc34685e4e7129b

See more details on using hashes here.

File details

Details for the file pyinstrument-4.6.0-cp39-cp39-win32.whl.

File metadata

  • Download URL: pyinstrument-4.6.0-cp39-cp39-win32.whl
  • Upload date:
  • Size: 89.2 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.18

File hashes

Hashes for pyinstrument-4.6.0-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 3ec6b04d8cfb34aec48de7fa77aeb919e8e7e19909740ab7a5553339f6f4c53a
MD5 5882dc666ff1dc8d8bfa2138342a2924
BLAKE2b-256 16742ffbd09f2c01ebdc16282997b74ba893e809994a37c8944027d6d9f0241c

See more details on using hashes here.

File details

Details for the file pyinstrument-4.6.0-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pyinstrument-4.6.0-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 dc9c4577ef4b06ae1592c920d0a4f0f0db587a16f530c629ad93e125bc79ebb7
MD5 1e560c02addee5a396bcbed5243893d8
BLAKE2b-256 0f036ff2aae27cfa0db724c0e5963c9ac903cfebfa6aa59ecf350e95e951ac5f

See more details on using hashes here.

File details

Details for the file pyinstrument-4.6.0-cp39-cp39-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for pyinstrument-4.6.0-cp39-cp39-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 4935f3cdb9062fceac65c50de76f07e05cf630bd3a9c663fedc9e88b5efe7d7c
MD5 b3d0ef9b8860a560ad0136dc68ba86b1
BLAKE2b-256 bc26a24120f386368d0b8db5d67b0c15fe67f40fec1679694f7907234b2efc31

See more details on using hashes here.

File details

Details for the file pyinstrument-4.6.0-cp39-cp39-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pyinstrument-4.6.0-cp39-cp39-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 20ce0f1612a019888a6b94fa7f1e7862842f0b5219282e3354d5b35aceb363f6
MD5 89c862ef25f220bf2350a8cdecc79aa2
BLAKE2b-256 75f63aec4a535593e4ced13f40e1e075a4a4a439f2c03549a26160925721d94e

See more details on using hashes here.

File details

Details for the file pyinstrument-4.6.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyinstrument-4.6.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 93a30e0d93633a28d4adcf7d7e2d158d6331809b95c2c4a155da17ea1e43eaa3
MD5 fbb65ae7d680130b5f009c85cb89fa32
BLAKE2b-256 e9a0c65eb4e6928de9e3c303e93ce6de6cba0825729fb86060d88ba2d04f5430

See more details on using hashes here.

File details

Details for the file pyinstrument-4.6.0-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyinstrument-4.6.0-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9e289898c644cbbb61d931bbcb6505e2a279ad1122612c9098bfb0958ebf5764
MD5 874a0d82a1a0decdf3938a3d62b00410
BLAKE2b-256 d76e6868ba173bb0fe71ceb4ba2a6055386d2ea70b59927cf83387e45d091045

See more details on using hashes here.

File details

Details for the file pyinstrument-4.6.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyinstrument-4.6.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 aa554eb8ef1c54849dbf480965b073f39b39b517e466ce241808a00398f9742a
MD5 614253b3b032dde431dbd6559bdd326d
BLAKE2b-256 fd8d4573f0e637f42da0574d9bdf848062ad3994fea0b7401f1da6ed1a05f935

See more details on using hashes here.

File details

Details for the file pyinstrument-4.6.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyinstrument-4.6.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 e790515a22844bbccaa388c7715b037c45a8d0155c4a6f2990659998a8920501
MD5 ba538d548b67a115802a351f073d96b5
BLAKE2b-256 587963841873e2f1e13eb52c7e115df550299226ac7790730fd332a74fadee70

See more details on using hashes here.

File details

Details for the file pyinstrument-4.6.0-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for pyinstrument-4.6.0-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 2bcfec45cdbb9edf6d5853debac4a792de589e621be07a71dc76acb36e144a3a
MD5 b9d0806373659af2ea9d1224161717d0
BLAKE2b-256 74d3cfcc5b769286b6eed3b84d88e7a5cf13e99b3acc0155db4835580d5e2fe8

See more details on using hashes here.

File details

Details for the file pyinstrument-4.6.0-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for pyinstrument-4.6.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 f3d88b66dbbcdc6e4c57bd8574ad9d096cd23285eee0f4a5cf74f0e0df6aa190
MD5 d6f58a72ff6c061e00883d84c5f7603f
BLAKE2b-256 48bb90de36915d97144e84d4b212831dbeba7e081a7941adc332625aed0f3270

See more details on using hashes here.

File details

Details for the file pyinstrument-4.6.0-cp38-cp38-win32.whl.

File metadata

  • Download URL: pyinstrument-4.6.0-cp38-cp38-win32.whl
  • Upload date:
  • Size: 89.0 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.18

File hashes

Hashes for pyinstrument-4.6.0-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 a24c95cabf2ca5d79b62dbc8ff17749768b8aafd777841352f59f4ffd6688782
MD5 f494661af72e72f845d7eda61f5ba5fc
BLAKE2b-256 4c9dc21399764cd12801ea56eb86be83910d6592aaa0e3cec9b52ece98d76980

See more details on using hashes here.

File details

Details for the file pyinstrument-4.6.0-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pyinstrument-4.6.0-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 d00c87e5cea48a562d67f0436999463b7989cff2e4c196b0e8ba06d515f191a9
MD5 bba54e33516210ea5daaf27e4aba0873
BLAKE2b-256 2b6b7fc7279e9544b65f16f31978971c8e604675f112e3d5b2c8becd6b0bd3cc

See more details on using hashes here.

File details

Details for the file pyinstrument-4.6.0-cp38-cp38-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for pyinstrument-4.6.0-cp38-cp38-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 e983e16c2fdfb752387133380859c3414e119e41c14f39f5f869f29dcf6e995c
MD5 74171015cecd988276269be74df5f1ff
BLAKE2b-256 05ad3f1e0cea295b0a6ed5c5ae8866a77c5f53ba246d9deb19dc142ad30d964b

See more details on using hashes here.

File details

Details for the file pyinstrument-4.6.0-cp38-cp38-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pyinstrument-4.6.0-cp38-cp38-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 f7a38ef482f2151393e729c5582191e4ab05f0ed1fa56b16c2377ff3129107af
MD5 a6ec10fdd878ccec94d12a08ade0b669
BLAKE2b-256 37a7898add56b17b09ee9c7dc783533228ab5dd5b6adabc4c23fd78c6c8b48c1

See more details on using hashes here.

File details

Details for the file pyinstrument-4.6.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyinstrument-4.6.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 29072b1be183e173d7b0f12caf29f8717d273afbf34df950f5fa0d98127cd3fb
MD5 e9d754cddcc0ccd6259c0d30e96f7fdc
BLAKE2b-256 936ac743b21ab83fee0944d55437f4f9a969e932bc163ba0217b617314a718ff

See more details on using hashes here.

File details

Details for the file pyinstrument-4.6.0-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyinstrument-4.6.0-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a23c982eb9c4d2f8fe553dacb9bdc0991170a0998b94c84f75c2a052e8af4c74
MD5 2f6fc959b526bd78fb8a3632a9d29224
BLAKE2b-256 6fc976a7033c967d7c7dc70f8bb71f08d22df93e92dd1cd3040672676cc1032c

See more details on using hashes here.

File details

Details for the file pyinstrument-4.6.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyinstrument-4.6.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 09502af2a383c59e5a0d3bebfab7e5845f79122348358e9e52b2b0187db84a44
MD5 f98c3068586a48506d9fd31faaceb21a
BLAKE2b-256 7e2dc16d4695b8729046d96e00c4ca6a6f5c71ba09b0910622905af8b52a14a9

See more details on using hashes here.

File details

Details for the file pyinstrument-4.6.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyinstrument-4.6.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 cb83e445795431c3d867b298c0583ee27717bbc50e5120a4c98575c979ab3ab8
MD5 14c381c3ffc8cad778bbadcb4a0822d8
BLAKE2b-256 1b9218d60b409694fe6ecdb5c2e32029b447adf500d1acac2fe679d2e36b2001

See more details on using hashes here.

File details

Details for the file pyinstrument-4.6.0-cp38-cp38-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for pyinstrument-4.6.0-cp38-cp38-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 8bf16e459a868d9dbaacff4f0a0acd6ad78ce36f2aceabf21e9fd0c3b6aca0d4
MD5 7534ba8069e093d5b22de9605dbad0ba
BLAKE2b-256 293c95a7d1bce0458e9b952fc8e401e857dac42b9bdf79b5a144e7753121f0bf

See more details on using hashes here.

File details

Details for the file pyinstrument-4.6.0-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for pyinstrument-4.6.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 9ded87ae11cb0a95a767c817908833ec0821fe0e81650968b201a031edf4bc15
MD5 c3e57e5a9a41c3472ee08d2f819a2f34
BLAKE2b-256 77a346b7c7b097797dabcf74cbea3439621147e3f1aaa3f47e5ca2dc7281cf52

See more details on using hashes here.

File details

Details for the file pyinstrument-4.6.0-cp37-cp37m-win32.whl.

File metadata

  • Download URL: pyinstrument-4.6.0-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 89.0 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.18

File hashes

Hashes for pyinstrument-4.6.0-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 46e16de6bd3b74ef01b6457d862fee751515315edb5e9283205e45299a29ac49
MD5 9179dd9f1fa3cf934029d1cc1275dc1c
BLAKE2b-256 7560c8b7fbfe68e779d68bec29a41fbc8e59655cfc7a46b43c240e283ec286bc

See more details on using hashes here.

File details

Details for the file pyinstrument-4.6.0-cp37-cp37m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pyinstrument-4.6.0-cp37-cp37m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 f3719464888d7303e1081996bc56ab75ef5cdf7ef69ccbb7b29f48eb37d8f8b9
MD5 03023ea82aaf56259450c9413e9b730b
BLAKE2b-256 90e457324541cdca3ab6cd3946a737d57ea266d8eb871e44db7c6aa525a8f023

See more details on using hashes here.

File details

Details for the file pyinstrument-4.6.0-cp37-cp37m-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for pyinstrument-4.6.0-cp37-cp37m-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 40640f02fe7865540e8a1e51bf7f9d2403e3364c3b7edfdb9dae5eb5596811da
MD5 83e7ff14ee9827876a9f90b9599f8d87
BLAKE2b-256 90728e078d5e7b69902f10492c3cf75f24a689e3f5dc27791b43b0c8967bcccb

See more details on using hashes here.

File details

Details for the file pyinstrument-4.6.0-cp37-cp37m-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pyinstrument-4.6.0-cp37-cp37m-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 7f83544ff9abfacdf64b39498ca3dcd454956e44aedb5f67626b7212291c9160
MD5 306d36d270fe0c1e9e900b0d59e58bf4
BLAKE2b-256 f2e53f61c7734c186de2f48d52b6faa475f41b9ff3a92af8d6821d04c7120b97

See more details on using hashes here.

File details

Details for the file pyinstrument-4.6.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyinstrument-4.6.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 cbebdc11d4fc6f3123c046d84db88c7f605d53247e3f357314d0c5775d1beaf4
MD5 b02897e2c939c0931180fa0fb9016a7e
BLAKE2b-256 02ed4e00d9ad1bd1a7f41f1d91b488007678717232d60ec3496c5dd8aa1c38b7

See more details on using hashes here.

File details

Details for the file pyinstrument-4.6.0-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyinstrument-4.6.0-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 03289b10715e261a5c33b267d0a430d1b408f929922fde0a9fd311835c60351b
MD5 68cbaf635c535acb0e9ccde0fded1ebf
BLAKE2b-256 9734c52f2a1d3071a262ef6580a49801caea58679c3dafc80920897d7a85b366

See more details on using hashes here.

File details

Details for the file pyinstrument-4.6.0-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyinstrument-4.6.0-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 2c7a7bae4cce5f8d084153857cedbce29ca8274c9924884d0461a5db48619c5d
MD5 db7c2dd2adaf5ea57ad418ee94ca938a
BLAKE2b-256 c682131538fcb3c84611072beb82da2e285d3419beffa18074e8f52b0e047587

See more details on using hashes here.

File details

Details for the file pyinstrument-4.6.0-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyinstrument-4.6.0-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 704c6d38abef8fca2e1085756c9574ea180f7ac866aab6943b483152c2828c2a
MD5 15bae654dfe269642964d029b2b54107
BLAKE2b-256 56b66a024fd83b93d39f1db53b0266ff65bceedf804c6fdff5a92914dcfb805e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page