Skip to main content

The interface between FastJet and NumPy

Project description

pyjet allows you to perform jet clustering with FastJet on NumPy arrays.

By default pyjet only depends on NumPy and internally uses FastJet’s standalone fjcore release. The interface code is written in Cython that then becomes compiled C++, so it’s fast.

pyjet provides the cluster() function that takes a NumPy array as input and returns a ClusterSequence from which you can access the jets:

sequence = cluster(event, R=1.0, p=-1)
jets = sequence.inclusive_jets()  # list of PseudoJets

The dtype of the input array can be either:

np.dtype([('pT', 'f8'), ('eta', 'f8'), ('phi', 'f8'), ('mass', 'f8')])

or if cluster(..., ep=True):

np.dtype([('E', 'f8'), ('px', 'f8'), ('py', 'f8'), ('pz', 'f8')])

The input array may have additional fields of any type and this data can be accessed as attributes of the PseudoJet objects.

Standalone Installation

To simply use the built-in FastJet source:

pip install --user pyjet

And you’re good to go!

Get example.py and run it:

curl -O https://raw.githubusercontent.com/ndawe/pyjet/master/examples/example.py
python example.py
jet#          pT        eta        phi       mass  #constit.
1        983.280     -0.868      2.905     36.457         34
2        901.745      0.221     -0.252     51.850         34
3         67.994     -1.194     -0.200     11.984         32
4         12.465      0.433      0.673      5.461         13
5          6.568     -2.629      1.133      2.099          9
6          6.498     -1.828     -2.248      3.309          6

The 6th jet has the following constituents:
PseudoJet(pt=0.096, eta=-2.166, phi=-2.271, mass=0.000)
PseudoJet(pt=2.200, eta=-1.747, phi=-1.972, mass=0.140)
PseudoJet(pt=1.713, eta=-2.037, phi=-2.469, mass=0.940)
PseudoJet(pt=0.263, eta=-1.682, phi=-2.564, mass=0.140)
PseudoJet(pt=1.478, eta=-1.738, phi=-2.343, mass=0.940)
PseudoJet(pt=0.894, eta=-1.527, phi=-2.250, mass=0.140)

Get the constituents as an array (pT, eta, phi, mass):
[( 0.09551261, -2.16560157, -2.27109083,   4.89091390e-06)
 ( 2.19975694, -1.74672746, -1.97178728,   1.39570000e-01)
 ( 1.71301882, -2.03656511, -2.46861524,   9.39570000e-01)
 ( 0.26339374, -1.68243005, -2.56397904,   1.39570000e-01)
 ( 1.47781519, -1.7378898 , -2.34304346,   9.39570000e-01)
 ( 0.89353864, -1.52729244, -2.24973202,   1.39570000e-01)]

or (E, px, py, pz):
[( 0.42190436, -0.06155242, -0.07303395, -0.41095089)
 ( 6.50193926, -0.85863306, -2.02526044, -6.11692764)
 ( 6.74203628, -1.33952806, -1.06775374, -6.45273802)
 ( 0.74600384, -0.22066287, -0.1438199 , -0.68386087)
 ( 4.43164941, -1.0311407 , -1.05862485, -4.07096881)
 ( 2.15920027, -0.56111108, -0.69538886, -1.96067711)]

Using an External FastJet Installation

To take advantage of the full FastJet library and optimized O(NlnN) kt and anti-kt algorithms, first install FastJet and then install pyjet with the --external-fastjet flag.

First install CGAL and GMP:

On a Debian-based system (Ubuntu):

sudo apt-get install libcgal-dev libcgal11v5 libgmp-dev libgmp10

On an RPM-based system (Fedora):

sudo dnf install gmp.x86_64 gmp-devel.x86_64 CGAL.x86_64 CGAL-devel.x86_64

On Mac OS:

brew install cgal gmp wget

Then run pyjet’s install-fastjet.sh script:

curl -O https://raw.githubusercontent.com/ndawe/pyjet/master/install-fastjet.sh
chmod +x install-fastjet.sh
sudo ./install-fastjet.sh

Now install pyjet like:

pip install --user pyjet --install-option="--external-fastjet"

pyjet will now use the external FastJet installation on your system.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyjet-0.4.0.tar.gz (162.6 kB view details)

Uploaded Source

File details

Details for the file pyjet-0.4.0.tar.gz.

File metadata

  • Download URL: pyjet-0.4.0.tar.gz
  • Upload date:
  • Size: 162.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for pyjet-0.4.0.tar.gz
Algorithm Hash digest
SHA256 6154c91098df288f5ca77361e54666612f68e5ec7c4c0b8c7892ad3a546129da
MD5 02c2902ed2bc98cbe908cc243b8223ef
BLAKE2b-256 2756412bbaa6b9d5d2e6b78065f78593f7bf2b0e352f3f0a0acc906e5903e249

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page