Skip to main content

The interface between FastJet and NumPy

Project description

  • pyjet has been maintained minimalistically over the past couple of years. In the meantime a new project started, to provide a modern Pythonic jet-finding package in the Scikit-HEP ecosystem.

  • fastjet provides official FastJet bindings to Python and Awkward Array. Refer to the GitHub repository for details.

pyjet: the interface between FastJet and NumPy

PyPI version Zenodo link Test status Wheel builds Binder

pyjet allows you to perform jet clustering with FastJet on NumPy arrays. By default pyjet only depends on NumPy and internally uses FastJet’s standalone fjcore release. The interface code is written in Cython that then becomes compiled C++, so it’s fast. Remember that if you use pyjet then you are using FastJet and should cite the papers listed here.

Strict dependencies

Getting started

pyjet provides the cluster() function that takes a NumPy array as input and returns a ClusterSequence from which you can access the jets:

from pyjet import cluster
from pyjet.testdata import get_event

vectors = get_event()
sequence = cluster(vectors, R=1.0, p=-1)
jets = sequence.inclusive_jets()  # list of PseudoJets
exclusivejets = sequence.exclusive_jets(3)  # Find the cluster history when there are 3 jets

The input is given in the form of a structured array in numpy. The first four fields of the input array vectors must be either:

np.dtype([('pT', 'f8'), ('eta', 'f8'), ('phi', 'f8'), ('mass', 'f8')])

or if cluster(..., ep=True):

np.dtype([('E', 'f8'), ('px', 'f8'), ('py', 'f8'), ('pz', 'f8')])

Note that the field names of the input array need not match ‘pT’, ‘eta’, ‘phi’, ‘mass’ etc. pyjet only assumes that the first four fields are those quantities. This array may also have additional fields of any type. Additional fields will then become attributes of the PseudoJet objects.

See the examples to get started:

https://github.com/scikit-hep/pyjet/raw/master/examples/jet_areas.png

Standalone Installation

To simply use the built-in FastJet source, from your virtual environment, run:

python -m pip install pyjet

And you’re good to go! If you have a old version of pip (<10), you will need to have Cython and Numpy already installed to build from source - however on most systems, you should get a binary wheel.

Get example.py and run it:

    curl -O https://raw.githubusercontent.com/scikit-hep/pyjet/master/examples/example.py
    python example.py
    jet#          pT        eta        phi       mass  #constit.
    1        983.280     -0.868      2.905     36.457         34
    2        901.745      0.221     -0.252     51.850         34
    3         67.994     -1.194     -0.200     11.984         32
    4         12.465      0.433      0.673      5.461         13
    5          6.568     -2.629      1.133      2.099          9
    6          6.498     -1.828     -2.248      3.309          6

    The 6th jet has the following constituents:
    PseudoJet(pt=0.096, eta=-2.166, phi=-2.271, mass=0.000)
    PseudoJet(pt=2.200, eta=-1.747, phi=-1.972, mass=0.140)
    PseudoJet(pt=1.713, eta=-2.037, phi=-2.469, mass=0.940)
    PseudoJet(pt=0.263, eta=-1.682, phi=-2.564, mass=0.140)
    PseudoJet(pt=1.478, eta=-1.738, phi=-2.343, mass=0.940)
    PseudoJet(pt=0.894, eta=-1.527, phi=-2.250, mass=0.140)

    Get the constituents as an array (pT, eta, phi, mass):
    [( 0.09551261, -2.16560157, -2.27109083,   4.89091390e-06)
     ( 2.19975694, -1.74672746, -1.97178728,   1.39570000e-01)
     ( 1.71301882, -2.03656511, -2.46861524,   9.39570000e-01)
     ( 0.26339374, -1.68243005, -2.56397904,   1.39570000e-01)
     ( 1.47781519, -1.7378898 , -2.34304346,   9.39570000e-01)
     ( 0.89353864, -1.52729244, -2.24973202,   1.39570000e-01)]

    or (E, px, py, pz):
    [( 0.42190436, -0.06155242, -0.07303395, -0.41095089)
     ( 6.50193926, -0.85863306, -2.02526044, -6.11692764)
     ( 6.74203628, -1.33952806, -1.06775374, -6.45273802)
     ( 0.74600384, -0.22066287, -0.1438199 , -0.68386087)
     ( 4.43164941, -1.0311407 , -1.05862485, -4.07096881)
     ( 2.15920027, -0.56111108, -0.69538886, -1.96067711)]

Reclustering the constituents of the hardest jet with the kt algorithm
[PseudoJet(pt=983.280, eta=-0.868, phi=2.905, mass=36.457)]

Go back in the clustering sequence to when there were two jets
PseudoJet(pt=946.493, eta=-0.870, phi=2.908, mass=20.117)
PseudoJet(pt=36.921, eta=-0.800, phi=2.821, mass=4.119)

Ask how many jets there are with a given dcut
There are 9 jets with a dcut of 0.5

Get the jets with the given dcut
1 PseudoJet(pt=308.478, eta=-0.865, phi=2.908, mass=2.119)
2 PseudoJet(pt=256.731, eta=-0.868, phi=2.906, mass=0.140)
3 PseudoJet(pt=142.326, eta=-0.886, phi=2.912, mass=0.829)
4 PseudoJet(pt=135.971, eta=-0.870, phi=2.910, mass=0.140)
5 PseudoJet(pt=91.084, eta=-0.864, phi=2.899, mass=1.530)
6 PseudoJet(pt=30.970, eta=-0.831, phi=2.822, mass=2.124)
7 PseudoJet(pt=7.123, eta=-0.954, phi=2.939, mass=1.017)
8 PseudoJet(pt=5.951, eta=-0.626, phi=2.818, mass=0.748)
9 PseudoJet(pt=4.829, eta=-0.812, phi=3.037, mass=0.384)

Using an External FastJet Installation

To take advantage of the full FastJet library, including the jet area calculations and the optimized O(NlnN) kt and anti-kt algorithms, you can first build and install FastJet and then install pyjet with the --external-fastjet flag. Before building FastJet you will need to install CGAL and GMP.

On a Debian-based system (Ubuntu):

sudo apt-get install libcgal-dev libcgal11v5 libgmp-dev libgmp10

On an RPM-based system (Fedora):

sudo dnf install gmp.x86_64 gmp-devel.x86_64 CGAL.x86_64 CGAL-devel.x86_64

On Mac OS:

brew install cgal gmp wget

Then run pyjet’s install-fastjet.sh script:

curl -O https://raw.githubusercontent.com/scikit-hep/pyjet/master/install-fastjet.sh
chmod +x install-fastjet.sh
sudo ./install-fastjet.sh

Now install pyjet like:

python -m pip install numpy Cython
python setup.py install --external-fastjet

pyjet will now use the external FastJet installation on your system.

Note on units

The package is indifferent to particular units, which are merely “propagated” through the code. We do recommend that the HEP units be used, as defined in the units module of the hepunits package.

It is worth noting that the azimuthal angle phi is expressed in radians and varies from pi to pi.

Developing

If you want to setup for development:

python3 -m venv .env
source .env/bin/activate
pip install -e .[dev]
pytest

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyjet-1.9.0.tar.gz (100.5 kB view details)

Uploaded Source

Built Distributions

pyjet-1.9.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (406.5 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pyjet-1.9.0-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (414.0 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

pyjet-1.9.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (406.3 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pyjet-1.9.0-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (413.8 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

pyjet-1.9.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (323.8 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pyjet-1.9.0-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (333.0 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

pyjet-1.9.0-cp310-cp310-win_amd64.whl (303.2 kB view details)

Uploaded CPython 3.10 Windows x86-64

pyjet-1.9.0-cp310-cp310-win32.whl (287.8 kB view details)

Uploaded CPython 3.10 Windows x86

pyjet-1.9.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

pyjet-1.9.0-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl (1.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686

pyjet-1.9.0-cp310-cp310-macosx_10_9_x86_64.whl (412.8 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

pyjet-1.9.0-cp39-cp39-win_amd64.whl (303.9 kB view details)

Uploaded CPython 3.9 Windows x86-64

pyjet-1.9.0-cp39-cp39-win32.whl (288.5 kB view details)

Uploaded CPython 3.9 Windows x86

pyjet-1.9.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

pyjet-1.9.0-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl (1.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686

pyjet-1.9.0-cp39-cp39-macosx_10_9_x86_64.whl (413.4 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

pyjet-1.9.0-cp38-cp38-win_amd64.whl (304.1 kB view details)

Uploaded CPython 3.8 Windows x86-64

pyjet-1.9.0-cp38-cp38-win32.whl (288.7 kB view details)

Uploaded CPython 3.8 Windows x86

pyjet-1.9.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

pyjet-1.9.0-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl (1.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686

pyjet-1.9.0-cp38-cp38-macosx_10_9_x86_64.whl (412.8 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

pyjet-1.9.0-cp37-cp37m-win_amd64.whl (303.4 kB view details)

Uploaded CPython 3.7m Windows x86-64

pyjet-1.9.0-cp37-cp37m-win32.whl (195.8 kB view details)

Uploaded CPython 3.7m Windows x86

pyjet-1.9.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

pyjet-1.9.0-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl (1.7 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ i686

pyjet-1.9.0-cp37-cp37m-macosx_10_9_x86_64.whl (320.3 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file pyjet-1.9.0.tar.gz.

File metadata

  • Download URL: pyjet-1.9.0.tar.gz
  • Upload date:
  • Size: 100.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for pyjet-1.9.0.tar.gz
Algorithm Hash digest
SHA256 2896c5a8f241d29b8b1fa19b89efb9707cb5931f2957b67baf6b17ff38d7c6c6
MD5 266f1eabe4efd56dff689c53f0ca9cc4
BLAKE2b-256 13eb3ce3ff19ec50f24995447cf0375ca4257cd560d4b21ce785ca6ee6783436

See more details on using hashes here.

File details

Details for the file pyjet-1.9.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyjet-1.9.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 fe28997a7d527c7ebf684499a20308f52384f4c8f85f2f46fc2a037c96d35b74
MD5 d53c625d988d83a4c8a998a80124eeac
BLAKE2b-256 8a305882ab03420e1930c13e9c5d530e2a7f0ab919dd78981fe0d9e977a45ee5

See more details on using hashes here.

File details

Details for the file pyjet-1.9.0-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyjet-1.9.0-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 e89f354faddb38bf5c9ef296a0c6fde45157e23da8ed796fa4a6fc2ddf68434a
MD5 5d121fc440d040040d1a3404376d6c7b
BLAKE2b-256 476099ea189b6232d8cbbaa2123c7629715c78bc29ebe42d0cf064021892a1bb

See more details on using hashes here.

File details

Details for the file pyjet-1.9.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyjet-1.9.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 14ff6c5574442682eb1d333606f20814bf827ffcc9fe0814b0c6fa2a599bc5ad
MD5 75c730b1cff2bf290ec7ec3fb47d6d5d
BLAKE2b-256 7c7a90a7d6e1fd002044bb6d04dc8003e34b7d04e2f7418055ea0c56c5f179dd

See more details on using hashes here.

File details

Details for the file pyjet-1.9.0-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyjet-1.9.0-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 865fa6c914059ad91f6bd66ec6d73e3cf15bf8c46cb9606443989bfd08ec497b
MD5 684b1a87a894af755481053ab29d34cb
BLAKE2b-256 bbb39496bd7b48e68dfaee485999fc17cea59e4d692c0922642f0d1407ae24e6

See more details on using hashes here.

File details

Details for the file pyjet-1.9.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyjet-1.9.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 175b2a1846956cd6da175b1e85971deadfca2c518d167e6b670e7322c78f87cc
MD5 9b4aa521a40e1f67e1ed95f27ade9a74
BLAKE2b-256 417cde676c677b517abed8828970c0411d4842434bc25be56f7211c3d0ff8258

See more details on using hashes here.

File details

Details for the file pyjet-1.9.0-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyjet-1.9.0-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 f82427b94488824abbabb7a656353b403ae69980fbe7a7a11a6728884a9418de
MD5 6840e2c19729ff8a34b9c3c9da759167
BLAKE2b-256 8bf38096d42ac41be38efe8d48319c2d36cbf658b7d5ee8fc92b7c4aad784213

See more details on using hashes here.

File details

Details for the file pyjet-1.9.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: pyjet-1.9.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 303.2 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for pyjet-1.9.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 7f9dd4359002d54b202eeca3f600ea9866615f2e51df8441a1618302623161cd
MD5 cf67ad38c116ef4981c3acaa88b3c94d
BLAKE2b-256 61018541b930271da7d5f9658f8c3226db0b7bbdeabea9771e65bdfd3ae1ba0d

See more details on using hashes here.

File details

Details for the file pyjet-1.9.0-cp310-cp310-win32.whl.

File metadata

  • Download URL: pyjet-1.9.0-cp310-cp310-win32.whl
  • Upload date:
  • Size: 287.8 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for pyjet-1.9.0-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 61ffdb4001db2d88af638936832ac66891c5a8a1d3431b32968e47ec19886102
MD5 97f6533eb0b26b83a3eccb5f7edaff39
BLAKE2b-256 828f9b64ec7f850741f716a4a99031b651e13afe7ae390bdecb3020a870089ac

See more details on using hashes here.

File details

Details for the file pyjet-1.9.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyjet-1.9.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e04a07ef3bd7c49e3a762eb02002b15e5b347d40adabdcd429bcb0acedb17e8f
MD5 d1d6b41496f07248a179009d6cbe6599
BLAKE2b-256 5d0796db082ada806f174a1e6ce9a88a72d944177e2789b67c1f97f2aef90f3e

See more details on using hashes here.

File details

Details for the file pyjet-1.9.0-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyjet-1.9.0-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 59bc11d94b648476ac1f2c4c0f91c025b1cb5d0caaddd9c76530b615f0442bc1
MD5 37d265fee05f5f33a7f64b02927572b3
BLAKE2b-256 62b1083c5b0908d66712a704ce35bdd763920b3d655361daf1f690408abff89a

See more details on using hashes here.

File details

Details for the file pyjet-1.9.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyjet-1.9.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 a2a8f9dc78b16c773a18528c2c9530d3246268b65db90bd56057b45f5a9d569c
MD5 e14d119749587c3bc160801647f4a037
BLAKE2b-256 cf5f63d07485502e9042f3569074b9c95ef9e884c948e5dd9159a41fb5a7d09d

See more details on using hashes here.

File details

Details for the file pyjet-1.9.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: pyjet-1.9.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 303.9 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for pyjet-1.9.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 f3e39a79c5b759a8d0b426e9f5af3cec2a62b3008a3e12bd871b43a3522a0548
MD5 b84d636ddce0d6709b1c01754217a488
BLAKE2b-256 5169955bb3bd6d8c51fbfafbe7c656ec2394d12eb9950cfa5be749fe0495974d

See more details on using hashes here.

File details

Details for the file pyjet-1.9.0-cp39-cp39-win32.whl.

File metadata

  • Download URL: pyjet-1.9.0-cp39-cp39-win32.whl
  • Upload date:
  • Size: 288.5 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for pyjet-1.9.0-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 8e5ee3eec5ad326e94a6885c6073b91045bd1f73403aeecb61081554afc1f514
MD5 4359a9712dafbeea63b5f86033b7b696
BLAKE2b-256 e59ec91e7bc905428e81f8158f9c9156d0d241cd6a3c78f518ab169d15d95d59

See more details on using hashes here.

File details

Details for the file pyjet-1.9.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyjet-1.9.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f012f216a60a69085f838261db54457ee803841ee74e9535bb7f0b0a94e258d0
MD5 b4d3bd0162466cff2e8ac964a9561fc7
BLAKE2b-256 54518090c4e986060ec8a421fd0a28b0b2b60c7fc36d9fd78aec4a4b0de1e8c1

See more details on using hashes here.

File details

Details for the file pyjet-1.9.0-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyjet-1.9.0-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 e09f02277c4296ee58026d90f53d08d1661bf32f10b57442fe0f73ec10bc86e8
MD5 4b8e66b225c69255e5aa14da32eb8b97
BLAKE2b-256 59a54c130223927f09695791611e3742ac94d383766396664363afdb30358c78

See more details on using hashes here.

File details

Details for the file pyjet-1.9.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyjet-1.9.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 474f73007a8bb9964fafd3ce36446be900422c9512019e24cbcb5a095bb04a05
MD5 167473f02ec139ef40af95a1ac3679df
BLAKE2b-256 56a439cbc9a3b6303e3918523401bc5fe46f983eadd08631fa2b07ba591bc334

See more details on using hashes here.

File details

Details for the file pyjet-1.9.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: pyjet-1.9.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 304.1 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for pyjet-1.9.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 4f3c50064469f1d9f727b3eeb7a08d9d5723a6f27695d0b0dbcc61e1e4df623e
MD5 e15ce53fc62754cefd231dd21cb6eb20
BLAKE2b-256 69c5269e8a1c870a6f52205c7e6139ec320b9ae8ce3c7371b78d773b8db7f7c8

See more details on using hashes here.

File details

Details for the file pyjet-1.9.0-cp38-cp38-win32.whl.

File metadata

  • Download URL: pyjet-1.9.0-cp38-cp38-win32.whl
  • Upload date:
  • Size: 288.7 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for pyjet-1.9.0-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 57a203afd74c031db6c461a08d1c06fd529e6a3bb9d84750872726215b3b1a4e
MD5 f029ce549be0fcec9f5768d9b7395072
BLAKE2b-256 cd32b3e61c648ef119793a2e00a6251728c5aef5e2c4bb62fd3796841a569aa7

See more details on using hashes here.

File details

Details for the file pyjet-1.9.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyjet-1.9.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d87ccebb17f6c05baed77c92f21a50ef0eeb6c490a21551271a9ec9782d55b83
MD5 afc8f9f06fb2fab32cd1b2c6d932a73a
BLAKE2b-256 37d19c273fd97c454982daf011da57e3f24aba53fc1331c8eb10e32dd5fe950c

See more details on using hashes here.

File details

Details for the file pyjet-1.9.0-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyjet-1.9.0-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 b0bb903784a8574bdcffacf1161abbce0ac9063e102313190f3bb78873857b11
MD5 f5e9f86d91824493989556a1dc7cdaae
BLAKE2b-256 ec9212f940b096ba502980494f1744ce05e457516b76cc78c81787e2ce0330b4

See more details on using hashes here.

File details

Details for the file pyjet-1.9.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyjet-1.9.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 7f8c145a94a0e214266b41832f5d32c7c709d33a2e119062fc8b909dde81e557
MD5 f95eaa468dc2476aa257794b71ddcf5b
BLAKE2b-256 d5f073debf2d4c1db7c29f5e0386175629989e9a9af55ca23c04478175bd9e06

See more details on using hashes here.

File details

Details for the file pyjet-1.9.0-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: pyjet-1.9.0-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 303.4 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for pyjet-1.9.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 e230d6faad74e8a33a6ad7d66b125db614ac662d52ff9e2eae698998aba681ce
MD5 515176014572cbcb0ad9a6e45984726f
BLAKE2b-256 0a40eab7cafb683e673cf0551442c7174cfe9e629321f151259d3de983a9c008

See more details on using hashes here.

File details

Details for the file pyjet-1.9.0-cp37-cp37m-win32.whl.

File metadata

  • Download URL: pyjet-1.9.0-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 195.8 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for pyjet-1.9.0-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 44e611d78f0b509e8335eda783f879f61769b6eee88d52020bc78c8e3395d70a
MD5 6246f4cd4b55e926cb61db4e7fbaeef3
BLAKE2b-256 04fb638815b065fa82462d3ed00846e768dfc5fc8b80cdcdb7a4839191068ffd

See more details on using hashes here.

File details

Details for the file pyjet-1.9.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyjet-1.9.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f88c596049ac7f950d30dc20e3cd10e5513092bad2704075af0e512594611aa8
MD5 9ae5d42e1c9c6db993d087e3d1123c54
BLAKE2b-256 25afbe1d39c2e8e4768aee4e51548b629477477e8e20ce19cd5294f230ab2d45

See more details on using hashes here.

File details

Details for the file pyjet-1.9.0-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyjet-1.9.0-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 f7fea1eb76da948afbc0866d493cb40f710b9729640995bf7c26a97634f913e8
MD5 ffd0a9365b7cbed8f2370034d4366fdc
BLAKE2b-256 fefcc3b8e3d89d8bd976eae156128e415e13caf8fc3ac952a3e7d6494d02020b

See more details on using hashes here.

File details

Details for the file pyjet-1.9.0-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyjet-1.9.0-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 8dce3297b5083ecb04861a49af28eb49018f7559c2059dc147cd8baeed78e233
MD5 8db3e2abbc16a5c443d974f561aa0117
BLAKE2b-256 fcae23459ae2e414db98a438771e1f6b4b271082ff275f67fd8f834bef7e3da9

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page