Skip to main content

python wrapper for Lance columnar format

Project description

Python bindings for Lance Data Format

:warning: Under heavy development

Lance Logo

Lance is a new columnar data format for data science and machine learning

Why you should use Lance

  1. Is order of magnitude faster than parquet for point queries and nested data structures common to DS/ML
  2. Comes with a fast vector index that delivers sub-millisecond nearest neighbors search performance
  3. Is automatically versioned and supports lineage and time-travel for full reproducibility
  4. Integrated with duckdb/pandas/polars already. Easily convert from/to parquet in 2 lines of code

Quick start

Installation

pip install pylance

Make sure you have a recent version of pandas (1.5+), pyarrow (10.0+), and DuckDB (0.7.0+)

Converting to Lance

import lance

import pandas as pd
import pyarrow as pa
import pyarrow.dataset

df = pd.DataFrame({"a": [5], "b": [10]})
uri = "/tmp/test.parquet"
tbl = pa.Table.from_pandas(df)
pa.dataset.write_dataset(tbl, uri, format='parquet')

parquet = pa.dataset.dataset(uri, format='parquet')
lance.write_dataset(parquet, "/tmp/test.lance")

Reading Lance data

dataset = lance.dataset("/tmp/test.lance")
assert isinstance(dataset, pa.dataset.Dataset)

Pandas

df = dataset.to_table().to_pandas()

DuckDB

import duckdb

# If this segfaults, make sure you have duckdb v0.7+ installed
duckdb.query("SELECT * FROM dataset LIMIT 10").to_df()

Vector search

Download the sift1m subset

wget ftp://ftp.irisa.fr/local/texmex/corpus/sift.tar.gz
tar -xzf sift.tar.gz

Convert it to Lance

import lance
from lance.vector import vec_to_table
import numpy as np
import struct

nvecs = 1000000
ndims = 128
with open("sift/sift_base.fvecs", mode="rb") as fobj:
    buf = fobj.read()
    data = np.array(struct.unpack("<128000000f", buf[4 : 4 + 4 * nvecs * ndims])).reshape((nvecs, ndims))
    dd = dict(zip(range(nvecs), data))

table = vec_to_table(dd)
uri = "vec_data.lance"
sift1m = lance.write_dataset(table, uri, max_rows_per_group=8192, max_rows_per_file=1024*1024)

Build the index

sift1m.create_index("vector",
                    index_type="IVF_PQ", 
                    num_partitions=256,  # IVF
                    num_sub_vectors=16)  # PQ

Search the dataset

# Get top 10 similar vectors
import duckdb

dataset = lance.dataset(uri)

# Sample 100 query vectors. If this segfaults, make sure you have duckdb v0.7+ installed
sample = duckdb.query("SELECT vector FROM dataset USING SAMPLE 100").to_df()
query_vectors = np.array([np.array(x) for x in sample.vector])

# Get nearest neighbors for all of them
rs = [dataset.to_table(nearest={"column": "vector", "k": 10, "q": q})      
      for q in query_vectors]

*More distance metrics, HNSW, and distributed support is on the roadmap

Python package details

Install from PyPI: pip install pylance # >=0.3.0 is the new rust-based implementation Install from source: maturin develop (under the /python directory) Run unit tests: make test Run integration tests: make integtest

Import via: import lance

The python integration is done via pyo3 + custom python code:

  1. We make wrapper classes in Rust for Dataset/Scanner/RecordBatchReader that's exposed to python.
  2. These are then used by LanceDataset / LanceScanner implementations that extend pyarrow Dataset/Scanner for duckdb compat.
  3. Data is delivered via the Arrow C Data Interface

Motivation

Why do we need a new format for data science and machine learning?

1. Reproducibility is a must-have

Versioning and experimentation support should be built into the dataset instead of requiring multiple tools.
It should also be efficient and not require expensive copying everytime you want to create a new version.
We call this "Zero copy versioning" in Lance. It makes versioning data easy without increasing storage costs.

2. Cloud storage is now the default

Remote object storage is the default now for data science and machine learning and the performance characteristics of cloud are fundamentally different.
Lance format is optimized to be cloud native. Common operations like filter-then-take can be order of magnitude faster using Lance than Parquet, especially for ML data.

3. Vectors must be a first class citizen, not a separate thing

The majority of reasonable scale workflows should not require the added complexity and cost of a specialized database just to compute vector similarity. Lance integrates optimized vector indices into a columnar format so no additional infrastructure is required to get low latency top-K similarity search.

4. Open standards is a requirement

The DS/ML ecosystem is incredibly rich and data must be easily accessible across different languages, tools, and environments. Lance makes Apache Arrow integration its primary interface, which means conversions to/from is 2 lines of code, your code does not need to change after conversion, and nothing is locked-up to force you to pay for vendor compute. We need open-source not fauxpen-source.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pylance-0.10.10-cp38-abi3-win_amd64.whl (22.4 MB view details)

Uploaded CPython 3.8+ Windows x86-64

pylance-0.10.10-cp38-abi3-manylinux_2_28_x86_64.whl (22.1 MB view details)

Uploaded CPython 3.8+ manylinux: glibc 2.28+ x86-64

pylance-0.10.10-cp38-abi3-manylinux_2_24_aarch64.whl (20.4 MB view details)

Uploaded CPython 3.8+ manylinux: glibc 2.24+ ARM64

pylance-0.10.10-cp38-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (22.1 MB view details)

Uploaded CPython 3.8+ manylinux: glibc 2.17+ x86-64

pylance-0.10.10-cp38-abi3-macosx_11_0_arm64.whl (19.3 MB view details)

Uploaded CPython 3.8+ macOS 11.0+ ARM64

pylance-0.10.10-cp38-abi3-macosx_10_15_x86_64.whl (21.0 MB view details)

Uploaded CPython 3.8+ macOS 10.15+ x86-64

File details

Details for the file pylance-0.10.10-cp38-abi3-win_amd64.whl.

File metadata

  • Download URL: pylance-0.10.10-cp38-abi3-win_amd64.whl
  • Upload date:
  • Size: 22.4 MB
  • Tags: CPython 3.8+, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.8.10

File hashes

Hashes for pylance-0.10.10-cp38-abi3-win_amd64.whl
Algorithm Hash digest
SHA256 db500b5816010ee4fb71807f6a799ff50d6a401c61e009d507705e6d4a0d55ba
MD5 173c40464fda11882aab2847e378433c
BLAKE2b-256 8eba84884f1c4a7fd0f145d33dba4bb69f97e3e132ca8fc3ee0f596a486c6b05

See more details on using hashes here.

Provenance

File details

Details for the file pylance-0.10.10-cp38-abi3-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for pylance-0.10.10-cp38-abi3-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 02705f1c653cce6a687126d0e1d9f0e6d145cad35ca60c6902efb48a2329482e
MD5 21f4db2ca617d72e3a7d0ef5d577520f
BLAKE2b-256 b0ce89531aba9d66edf8c7b6917710fe1c08c04b75f97db560cf3b337f595f1f

See more details on using hashes here.

Provenance

File details

Details for the file pylance-0.10.10-cp38-abi3-manylinux_2_24_aarch64.whl.

File metadata

File hashes

Hashes for pylance-0.10.10-cp38-abi3-manylinux_2_24_aarch64.whl
Algorithm Hash digest
SHA256 b4d78d0c10e6d09a77bbf16fea3f2e78194e7c58c9e9238b0117f5780f41c1f6
MD5 ff54dc6db2485dcaad04619aee220643
BLAKE2b-256 ded61204d8c36a0bea215068868bf20c68ddcf8c9df843bf31138d2b15f83fa4

See more details on using hashes here.

Provenance

File details

Details for the file pylance-0.10.10-cp38-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pylance-0.10.10-cp38-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 660b6d39af187dad4995109a15863775fa329dccf8428193a98f32465e9d220f
MD5 aa2d749deb1be39f35169e1aa0021a70
BLAKE2b-256 95d5aedec2c2f1da2a5f84a1450f7298853d948c08766f33714227becc981266

See more details on using hashes here.

Provenance

File details

Details for the file pylance-0.10.10-cp38-abi3-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pylance-0.10.10-cp38-abi3-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 ddda28d69e2a998fd4bf846abff51f8a08af789d2061199d6dec50d3a260a5a6
MD5 a7ca78ec87021729444dc658692c5ca2
BLAKE2b-256 fa5c2f7d3acee08072b160fcfbb36b6e62b993a00696c11b6820586cc7ba7dea

See more details on using hashes here.

Provenance

File details

Details for the file pylance-0.10.10-cp38-abi3-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for pylance-0.10.10-cp38-abi3-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 38eb5d2e470b1bdd58007b71e02f1bbd8dec71a479619b16050fecf768b60939
MD5 47b9d235f150f478ebee20f9ba4d26d0
BLAKE2b-256 55adb05f69a55360bc61bd9d0bab57362e5e889df19e09186eabb0ec81f0bda1

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page