Skip to main content

python wrapper for Lance columnar format

Project description

Python bindings for Lance Data Format

:warning: Under heavy development

Lance Logo

Lance is a new columnar data format for data science and machine learning

Why you should use Lance

  1. Is order of magnitude faster than parquet for point queries and nested data structures common to DS/ML
  2. Comes with a fast vector index that delivers sub-millisecond nearest neighbors search performance
  3. Is automatically versioned and supports lineage and time-travel for full reproducibility
  4. Integrated with duckdb/pandas/polars already. Easily convert from/to parquet in 2 lines of code

Quick start

Installation

pip install pylance

Make sure you have a recent version of pandas (1.5+), pyarrow (10.0+), and DuckDB (0.7.0+)

Converting to Lance

import lance

import pandas as pd
import pyarrow as pa
import pyarrow.dataset

df = pd.DataFrame({"a": [5], "b": [10]})
uri = "/tmp/test.parquet"
tbl = pa.Table.from_pandas(df)
pa.dataset.write_dataset(tbl, uri, format='parquet')

parquet = pa.dataset.dataset(uri, format='parquet')
lance.write_dataset(parquet, "/tmp/test.lance")

Reading Lance data

dataset = lance.dataset("/tmp/test.lance")
assert isinstance(dataset, pa.dataset.Dataset)

Pandas

df = dataset.to_table().to_pandas()

DuckDB

import duckdb

# If this segfaults, make sure you have duckdb v0.7+ installed
duckdb.query("SELECT * FROM dataset LIMIT 10").to_df()

Vector search

Download the sift1m subset

wget ftp://ftp.irisa.fr/local/texmex/corpus/sift.tar.gz
tar -xzf sift.tar.gz

Convert it to Lance

import lance
from lance.vector import vec_to_table
import numpy as np
import struct

nvecs = 1000000
ndims = 128
with open("sift/sift_base.fvecs", mode="rb") as fobj:
    buf = fobj.read()
    data = np.array(struct.unpack("<128000000f", buf[4 : 4 + 4 * nvecs * ndims])).reshape((nvecs, ndims))
    dd = dict(zip(range(nvecs), data))

table = vec_to_table(dd)
uri = "vec_data.lance"
sift1m = lance.write_dataset(table, uri, max_rows_per_group=8192, max_rows_per_file=1024*1024)

Build the index

sift1m.create_index("vector",
                    index_type="IVF_PQ", 
                    num_partitions=256,  # IVF
                    num_sub_vectors=16)  # PQ

Search the dataset

# Get top 10 similar vectors
import duckdb

dataset = lance.dataset(uri)

# Sample 100 query vectors. If this segfaults, make sure you have duckdb v0.7+ installed
sample = duckdb.query("SELECT vector FROM dataset USING SAMPLE 100").to_df()
query_vectors = np.array([np.array(x) for x in sample.vector])

# Get nearest neighbors for all of them
rs = [dataset.to_table(nearest={"column": "vector", "k": 10, "q": q})      
      for q in query_vectors]

*More distance metrics, HNSW, and distributed support is on the roadmap

Python package details

Install from PyPI: pip install pylance # >=0.3.0 is the new rust-based implementation Install from source: maturin develop (under the /python directory) Run unit tests: make test Run integration tests: make integtest

Import via: import lance

The python integration is done via pyo3 + custom python code:

  1. We make wrapper classes in Rust for Dataset/Scanner/RecordBatchReader that's exposed to python.
  2. These are then used by LanceDataset / LanceScanner implementations that extend pyarrow Dataset/Scanner for duckdb compat.
  3. Data is delivered via the Arrow C Data Interface

Motivation

Why do we need a new format for data science and machine learning?

1. Reproducibility is a must-have

Versioning and experimentation support should be built into the dataset instead of requiring multiple tools.
It should also be efficient and not require expensive copying everytime you want to create a new version.
We call this "Zero copy versioning" in Lance. It makes versioning data easy without increasing storage costs.

2. Cloud storage is now the default

Remote object storage is the default now for data science and machine learning and the performance characteristics of cloud are fundamentally different.
Lance format is optimized to be cloud native. Common operations like filter-then-take can be order of magnitude faster using Lance than Parquet, especially for ML data.

3. Vectors must be a first class citizen, not a separate thing

The majority of reasonable scale workflows should not require the added complexity and cost of a specialized database just to compute vector similarity. Lance integrates optimized vector indices into a columnar format so no additional infrastructure is required to get low latency top-K similarity search.

4. Open standards is a requirement

The DS/ML ecosystem is incredibly rich and data must be easily accessible across different languages, tools, and environments. Lance makes Apache Arrow integration its primary interface, which means conversions to/from is 2 lines of code, your code does not need to change after conversion, and nothing is locked-up to force you to pay for vendor compute. We need open-source not fauxpen-source.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pylance-0.10.11-cp38-abi3-win_amd64.whl (22.8 MB view details)

Uploaded CPython 3.8+ Windows x86-64

pylance-0.10.11-cp38-abi3-manylinux_2_28_x86_64.whl (22.4 MB view details)

Uploaded CPython 3.8+ manylinux: glibc 2.28+ x86-64

pylance-0.10.11-cp38-abi3-manylinux_2_24_aarch64.whl (20.6 MB view details)

Uploaded CPython 3.8+ manylinux: glibc 2.24+ ARM64

pylance-0.10.11-cp38-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (22.4 MB view details)

Uploaded CPython 3.8+ manylinux: glibc 2.17+ x86-64

pylance-0.10.11-cp38-abi3-macosx_11_0_arm64.whl (19.5 MB view details)

Uploaded CPython 3.8+ macOS 11.0+ ARM64

pylance-0.10.11-cp38-abi3-macosx_10_15_x86_64.whl (21.2 MB view details)

Uploaded CPython 3.8+ macOS 10.15+ x86-64

File details

Details for the file pylance-0.10.11-cp38-abi3-win_amd64.whl.

File metadata

  • Download URL: pylance-0.10.11-cp38-abi3-win_amd64.whl
  • Upload date:
  • Size: 22.8 MB
  • Tags: CPython 3.8+, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.8.10

File hashes

Hashes for pylance-0.10.11-cp38-abi3-win_amd64.whl
Algorithm Hash digest
SHA256 21b6a0945377ebccf0c6a57ba6d64d2589ac85f2cd93b488e207aa9de04f7247
MD5 dc40c5a80001b08ae4db814c90610e6f
BLAKE2b-256 077003304fa3b21eef039f055d08bda6c029e055d12244fc2d360adb160bad5d

See more details on using hashes here.

Provenance

File details

Details for the file pylance-0.10.11-cp38-abi3-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for pylance-0.10.11-cp38-abi3-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 e60b8f695fd67bb95bdd85ea81ce6b3d4098623fed54127c69557c3f1b6709fb
MD5 1d9f428d839117b0aad9513787c29fd9
BLAKE2b-256 f9ed7a7038afb261db403565a1879fa87a5f2aa535f23d8b44c20d14e1043061

See more details on using hashes here.

Provenance

File details

Details for the file pylance-0.10.11-cp38-abi3-manylinux_2_24_aarch64.whl.

File metadata

File hashes

Hashes for pylance-0.10.11-cp38-abi3-manylinux_2_24_aarch64.whl
Algorithm Hash digest
SHA256 a55b15a20538675ff19bf14eafdf38273be136c3b29c28d3c3e7036b9067346c
MD5 59a8042ccbb4e4f5537ffe4868ed6479
BLAKE2b-256 4fc2638ce6e68d348e7a3bccb2d4d298ce1915da871d58a0ee1163f7d9ae57a8

See more details on using hashes here.

Provenance

File details

Details for the file pylance-0.10.11-cp38-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pylance-0.10.11-cp38-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 463c0fed62d190ec5997d9d98bed3fff909af70b7b7f1347aa00a6d00d5cfbbd
MD5 aee86e310fa89ca5ee01b37f485fbf82
BLAKE2b-256 7ecf44d134ac2225663880aea8998166fb5d9663bfcc967e58ee246de4eb7f43

See more details on using hashes here.

Provenance

File details

Details for the file pylance-0.10.11-cp38-abi3-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pylance-0.10.11-cp38-abi3-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 1347752ccae0a2a2433518f11302153ac538a5abdaee6d7c06aee3ac5ef9a76e
MD5 0185e16fd2cc437b00aafe37bffb5986
BLAKE2b-256 a9cad7d0b79e90016bd9c6abcb2907cc09c838946ba3f5a5e27669ef02d6f6f6

See more details on using hashes here.

Provenance

File details

Details for the file pylance-0.10.11-cp38-abi3-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for pylance-0.10.11-cp38-abi3-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 6cfce79460caa3c7264981997b27471f4e9e348dcb976ee4d8562e0b25b8ddd2
MD5 5c603cdc55a39c87caf036736966a458
BLAKE2b-256 9488c0260265a498645cc1eaddc7e1783c78ee91cc6d8e77b16577e8e9869c79

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page