Skip to main content

python wrapper for Lance columnar format

Project description

Python bindings for Lance Data Format

:warning: Under heavy development

Lance Logo

Lance is a new columnar data format for data science and machine learning

Why you should use Lance

  1. Is order of magnitude faster than parquet for point queries and nested data structures common to DS/ML
  2. Comes with a fast vector index that delivers sub-millisecond nearest neighbors search performance
  3. Is automatically versioned and supports lineage and time-travel for full reproducibility
  4. Integrated with duckdb/pandas/polars already. Easily convert from/to parquet in 2 lines of code

Quick start

Installation

pip install pylance

Make sure you have a recent version of pandas (1.5+), pyarrow (10.0+), and DuckDB (0.7.0+)

Converting to Lance

import lance

import pandas as pd
import pyarrow as pa
import pyarrow.dataset

df = pd.DataFrame({"a": [5], "b": [10]})
uri = "/tmp/test.parquet"
tbl = pa.Table.from_pandas(df)
pa.dataset.write_dataset(tbl, uri, format='parquet')

parquet = pa.dataset.dataset(uri, format='parquet')
lance.write_dataset(parquet, "/tmp/test.lance")

Reading Lance data

dataset = lance.dataset("/tmp/test.lance")
assert isinstance(dataset, pa.dataset.Dataset)

Pandas

df = dataset.to_table().to_pandas()

DuckDB

import duckdb

# If this segfaults, make sure you have duckdb v0.7+ installed
duckdb.query("SELECT * FROM dataset LIMIT 10").to_df()

Vector search

Download the sift1m subset

wget ftp://ftp.irisa.fr/local/texmex/corpus/sift.tar.gz
tar -xzf sift.tar.gz

Convert it to Lance

import lance
from lance.vector import vec_to_table
import numpy as np
import struct

nvecs = 1000000
ndims = 128
with open("sift/sift_base.fvecs", mode="rb") as fobj:
    buf = fobj.read()
    data = np.array(struct.unpack("<128000000f", buf[4 : 4 + 4 * nvecs * ndims])).reshape((nvecs, ndims))
    dd = dict(zip(range(nvecs), data))

table = vec_to_table(dd)
uri = "vec_data.lance"
sift1m = lance.write_dataset(table, uri, max_rows_per_group=8192, max_rows_per_file=1024*1024)

Build the index

sift1m.create_index("vector",
                    index_type="IVF_PQ", 
                    num_partitions=256,  # IVF
                    num_sub_vectors=16)  # PQ

Search the dataset

# Get top 10 similar vectors
import duckdb

dataset = lance.dataset(uri)

# Sample 100 query vectors. If this segfaults, make sure you have duckdb v0.7+ installed
sample = duckdb.query("SELECT vector FROM dataset USING SAMPLE 100").to_df()
query_vectors = np.array([np.array(x) for x in sample.vector])

# Get nearest neighbors for all of them
rs = [dataset.to_table(nearest={"column": "vector", "k": 10, "q": q})      
      for q in query_vectors]

*More distance metrics, HNSW, and distributed support is on the roadmap

Python package details

Install from PyPI: pip install pylance # >=0.3.0 is the new rust-based implementation Install from source: maturin develop (under the /python directory) Run unit tests: make test Run integration tests: make integtest

Import via: import lance

The python integration is done via pyo3 + custom python code:

  1. We make wrapper classes in Rust for Dataset/Scanner/RecordBatchReader that's exposed to python.
  2. These are then used by LanceDataset / LanceScanner implementations that extend pyarrow Dataset/Scanner for duckdb compat.
  3. Data is delivered via the Arrow C Data Interface

Motivation

Why do we need a new format for data science and machine learning?

1. Reproducibility is a must-have

Versioning and experimentation support should be built into the dataset instead of requiring multiple tools.
It should also be efficient and not require expensive copying everytime you want to create a new version.
We call this "Zero copy versioning" in Lance. It makes versioning data easy without increasing storage costs.

2. Cloud storage is now the default

Remote object storage is the default now for data science and machine learning and the performance characteristics of cloud are fundamentally different.
Lance format is optimized to be cloud native. Common operations like filter-then-take can be order of magnitude faster using Lance than Parquet, especially for ML data.

3. Vectors must be a first class citizen, not a separate thing

The majority of reasonable scale workflows should not require the added complexity and cost of a specialized database just to compute vector similarity. Lance integrates optimized vector indices into a columnar format so no additional infrastructure is required to get low latency top-K similarity search.

4. Open standards is a requirement

The DS/ML ecosystem is incredibly rich and data must be easily accessible across different languages, tools, and environments. Lance makes Apache Arrow integration its primary interface, which means conversions to/from is 2 lines of code, your code does not need to change after conversion, and nothing is locked-up to force you to pay for vendor compute. We need open-source not fauxpen-source.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pylance-0.10.13-cp38-abi3-win_amd64.whl (22.8 MB view details)

Uploaded CPython 3.8+ Windows x86-64

pylance-0.10.13-cp38-abi3-manylinux_2_28_x86_64.whl (22.5 MB view details)

Uploaded CPython 3.8+ manylinux: glibc 2.28+ x86-64

pylance-0.10.13-cp38-abi3-manylinux_2_24_aarch64.whl (20.7 MB view details)

Uploaded CPython 3.8+ manylinux: glibc 2.24+ ARM64

pylance-0.10.13-cp38-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (22.5 MB view details)

Uploaded CPython 3.8+ manylinux: glibc 2.17+ x86-64

pylance-0.10.13-cp38-abi3-macosx_11_0_arm64.whl (19.6 MB view details)

Uploaded CPython 3.8+ macOS 11.0+ ARM64

pylance-0.10.13-cp38-abi3-macosx_10_15_x86_64.whl (21.3 MB view details)

Uploaded CPython 3.8+ macOS 10.15+ x86-64

File details

Details for the file pylance-0.10.13-cp38-abi3-win_amd64.whl.

File metadata

  • Download URL: pylance-0.10.13-cp38-abi3-win_amd64.whl
  • Upload date:
  • Size: 22.8 MB
  • Tags: CPython 3.8+, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.8.10

File hashes

Hashes for pylance-0.10.13-cp38-abi3-win_amd64.whl
Algorithm Hash digest
SHA256 f4bfcfe4300a9554e8f27d3f2d5ab585470655d3834654533a44461174ee6c35
MD5 c1ed9b183502d2127ef9fabbf2a1a331
BLAKE2b-256 ff6701f12cae9d9a5c5ad417345a49f7edaf0d1cb871dba144a061929c83f453

See more details on using hashes here.

Provenance

File details

Details for the file pylance-0.10.13-cp38-abi3-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for pylance-0.10.13-cp38-abi3-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 6b1c2226e78ed1b177176b97d73cac2af32df17d2c276117bf393d137abbc2a0
MD5 44257062fc947b9ad7d2943757ca56da
BLAKE2b-256 d97e4467ed0077b09065a8b39590e4796bd6d484b96066ec5bc3b84bb9149d0b

See more details on using hashes here.

Provenance

File details

Details for the file pylance-0.10.13-cp38-abi3-manylinux_2_24_aarch64.whl.

File metadata

File hashes

Hashes for pylance-0.10.13-cp38-abi3-manylinux_2_24_aarch64.whl
Algorithm Hash digest
SHA256 8e3faf0e4a956b4eb9bb08b4f7a8764169f82abe289e0b949a3196c7f96b4de3
MD5 0cda2311eaad0ed27294907f1e5054a5
BLAKE2b-256 646590f47643f81a99225be40bffd068b0b5e8a5f93683b024bd325a9231fce3

See more details on using hashes here.

Provenance

File details

Details for the file pylance-0.10.13-cp38-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pylance-0.10.13-cp38-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ff143a51c10b6c403a33c98bdce7f5e3bdbfa0b328622121cfbf4193e088f76b
MD5 5b909ab0115cd9421e0e44e76e24fd90
BLAKE2b-256 04699b73d3c9e0e9ff52e7c0f1f38534006e0b38a3bc6dd7817a52e91639d6fd

See more details on using hashes here.

Provenance

File details

Details for the file pylance-0.10.13-cp38-abi3-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pylance-0.10.13-cp38-abi3-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 05d108a1d6ba1f8ea4b0bd7d0b474f38a71a73dad3e573de6f60a931574840f5
MD5 8452cfe50c40a0bc68e670c9a72da494
BLAKE2b-256 71a944b106b0005acd314eb4670ea266509906eded476c6a98b8a50a7ddea989

See more details on using hashes here.

Provenance

File details

Details for the file pylance-0.10.13-cp38-abi3-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for pylance-0.10.13-cp38-abi3-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 63a933157ae37c9119755ba7e5d14c49f9998f6e735f425081623653f9ea4bf2
MD5 1d22cb5a504579b34ac24c68957127f5
BLAKE2b-256 de627069bca2a5d1a4391e0e4395a4c6de47eb54efed56f8b860a4f203ccf2df

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page