Skip to main content

python wrapper for Lance columnar format

Project description

Python bindings for Lance Data Format

:warning: Under heavy development

Lance Logo

Lance is a new columnar data format for data science and machine learning

Why you should use Lance

  1. Is order of magnitude faster than parquet for point queries and nested data structures common to DS/ML
  2. Comes with a fast vector index that delivers sub-millisecond nearest neighbors search performance
  3. Is automatically versioned and supports lineage and time-travel for full reproducibility
  4. Integrated with duckdb/pandas/polars already. Easily convert from/to parquet in 2 lines of code

Quick start

Installation

pip install pylance

Make sure you have a recent version of pandas (1.5+), pyarrow (10.0+), and DuckDB (0.7.0+)

Converting to Lance

import lance

import pandas as pd
import pyarrow as pa
import pyarrow.dataset

df = pd.DataFrame({"a": [5], "b": [10]})
uri = "/tmp/test.parquet"
tbl = pa.Table.from_pandas(df)
pa.dataset.write_dataset(tbl, uri, format='parquet')

parquet = pa.dataset.dataset(uri, format='parquet')
lance.write_dataset(parquet, "/tmp/test.lance")

Reading Lance data

dataset = lance.dataset("/tmp/test.lance")
assert isinstance(dataset, pa.dataset.Dataset)

Pandas

df = dataset.to_table().to_pandas()

DuckDB

import duckdb

# If this segfaults, make sure you have duckdb v0.7+ installed
duckdb.query("SELECT * FROM dataset LIMIT 10").to_df()

Vector search

Download the sift1m subset

wget ftp://ftp.irisa.fr/local/texmex/corpus/sift.tar.gz
tar -xzf sift.tar.gz

Convert it to Lance

import lance
from lance.vector import vec_to_table
import numpy as np
import struct

nvecs = 1000000
ndims = 128
with open("sift/sift_base.fvecs", mode="rb") as fobj:
    buf = fobj.read()
    data = np.array(struct.unpack("<128000000f", buf[4 : 4 + 4 * nvecs * ndims])).reshape((nvecs, ndims))
    dd = dict(zip(range(nvecs), data))

table = vec_to_table(dd)
uri = "vec_data.lance"
sift1m = lance.write_dataset(table, uri, max_rows_per_group=8192, max_rows_per_file=1024*1024)

Build the index

sift1m.create_index("vector",
                    index_type="IVF_PQ", 
                    num_partitions=256,  # IVF
                    num_sub_vectors=16)  # PQ

Search the dataset

# Get top 10 similar vectors
import duckdb

dataset = lance.dataset(uri)

# Sample 100 query vectors. If this segfaults, make sure you have duckdb v0.7+ installed
sample = duckdb.query("SELECT vector FROM dataset USING SAMPLE 100").to_df()
query_vectors = np.array([np.array(x) for x in sample.vector])

# Get nearest neighbors for all of them
rs = [dataset.to_table(nearest={"column": "vector", "k": 10, "q": q})      
      for q in query_vectors]

*More distance metrics, HNSW, and distributed support is on the roadmap

Python package details

Install from PyPI: pip install pylance # >=0.3.0 is the new rust-based implementation Install from source: maturin develop (under the /python directory) Run unit tests: make test Run integration tests: make integtest

Import via: import lance

The python integration is done via pyo3 + custom python code:

  1. We make wrapper classes in Rust for Dataset/Scanner/RecordBatchReader that's exposed to python.
  2. These are then used by LanceDataset / LanceScanner implementations that extend pyarrow Dataset/Scanner for duckdb compat.
  3. Data is delivered via the Arrow C Data Interface

Motivation

Why do we need a new format for data science and machine learning?

1. Reproducibility is a must-have

Versioning and experimentation support should be built into the dataset instead of requiring multiple tools.
It should also be efficient and not require expensive copying everytime you want to create a new version.
We call this "Zero copy versioning" in Lance. It makes versioning data easy without increasing storage costs.

2. Cloud storage is now the default

Remote object storage is the default now for data science and machine learning and the performance characteristics of cloud are fundamentally different.
Lance format is optimized to be cloud native. Common operations like filter-then-take can be order of magnitude faster using Lance than Parquet, especially for ML data.

3. Vectors must be a first class citizen, not a separate thing

The majority of reasonable scale workflows should not require the added complexity and cost of a specialized database just to compute vector similarity. Lance integrates optimized vector indices into a columnar format so no additional infrastructure is required to get low latency top-K similarity search.

4. Open standards is a requirement

The DS/ML ecosystem is incredibly rich and data must be easily accessible across different languages, tools, and environments. Lance makes Apache Arrow integration its primary interface, which means conversions to/from is 2 lines of code, your code does not need to change after conversion, and nothing is locked-up to force you to pay for vendor compute. We need open-source not fauxpen-source.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pylance-0.10.18-cp39-abi3-win_amd64.whl (23.4 MB view details)

Uploaded CPython 3.9+ Windows x86-64

pylance-0.10.18-cp39-abi3-manylinux_2_28_x86_64.whl (22.8 MB view details)

Uploaded CPython 3.9+ manylinux: glibc 2.28+ x86-64

pylance-0.10.18-cp39-abi3-manylinux_2_24_aarch64.whl (20.9 MB view details)

Uploaded CPython 3.9+ manylinux: glibc 2.24+ ARM64

pylance-0.10.18-cp39-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (22.8 MB view details)

Uploaded CPython 3.9+ manylinux: glibc 2.17+ x86-64

pylance-0.10.18-cp39-abi3-macosx_11_0_arm64.whl (20.1 MB view details)

Uploaded CPython 3.9+ macOS 11.0+ ARM64

pylance-0.10.18-cp39-abi3-macosx_10_15_x86_64.whl (21.6 MB view details)

Uploaded CPython 3.9+ macOS 10.15+ x86-64

File details

Details for the file pylance-0.10.18-cp39-abi3-win_amd64.whl.

File metadata

  • Download URL: pylance-0.10.18-cp39-abi3-win_amd64.whl
  • Upload date:
  • Size: 23.4 MB
  • Tags: CPython 3.9+, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.13

File hashes

Hashes for pylance-0.10.18-cp39-abi3-win_amd64.whl
Algorithm Hash digest
SHA256 2b47be208258a93a416172986a774d4355e18ab580fb06fb098b28f382bcfd03
MD5 039c4f555291302a13a404492e72e8b6
BLAKE2b-256 43d83bcd8a7bfa697b259771205cb12e78f6a3004449f10cdd5ee45c3c9166c5

See more details on using hashes here.

Provenance

File details

Details for the file pylance-0.10.18-cp39-abi3-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for pylance-0.10.18-cp39-abi3-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 621c2a61e67c00c79207f10478c9335d5573f72d81a2e514eacfdb987e14c2ab
MD5 64e0121c5971eb389eacff3586fb6e48
BLAKE2b-256 85711014b63bb6cd2b425796d6eff23c526c3ef3e1eb4d6256147f884c497838

See more details on using hashes here.

Provenance

File details

Details for the file pylance-0.10.18-cp39-abi3-manylinux_2_24_aarch64.whl.

File metadata

File hashes

Hashes for pylance-0.10.18-cp39-abi3-manylinux_2_24_aarch64.whl
Algorithm Hash digest
SHA256 6d4e1232642b6cb646144dab3e3e5067c8873b9547b9680fdec72784b68cbdb4
MD5 650b848049a971be8c88aaff1a74490f
BLAKE2b-256 8d25edd3b470343c4c45c70665df43ba8ae23519fcf567ecc61985ef1a4007c3

See more details on using hashes here.

Provenance

File details

Details for the file pylance-0.10.18-cp39-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pylance-0.10.18-cp39-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6e727081b024066521cf2e640a4aecbd79562e5b8fc6378569809b86c4e9e78e
MD5 5de9c0505012a57f06f5340419b40266
BLAKE2b-256 80b399d10516dc5b655033588fae2de455afa55c79043e55244be290525c4c1e

See more details on using hashes here.

Provenance

File details

Details for the file pylance-0.10.18-cp39-abi3-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pylance-0.10.18-cp39-abi3-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 335b85a73d881a397d1b213b6fcec7125087dca6a967831785d9ce1e5b065b04
MD5 d9084eef13ed9d0c17d05abefe2cc730
BLAKE2b-256 fa93b641221368b13eefe99b20483b50c164a179b2cbc120f537abc9dcf5428b

See more details on using hashes here.

Provenance

File details

Details for the file pylance-0.10.18-cp39-abi3-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for pylance-0.10.18-cp39-abi3-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 b5cc2d2946282be20b75d1efae0bd0d3630aeb89756df7bdb8346a30f7851816
MD5 d3d4be0c13cf696c9420462073c802d2
BLAKE2b-256 6f9f155ab19c14e6c6cb64c1ea94eb43b90863a65f68a58635d09f731bb0853c

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page