Skip to main content

python wrapper for Lance columnar format

Project description

Python bindings for Lance Data Format

:warning: Under heavy development

Lance Logo

Lance is a new columnar data format for data science and machine learning

Why you should use Lance

  1. Is order of magnitude faster than parquet for point queries and nested data structures common to DS/ML
  2. Comes with a fast vector index that delivers sub-millisecond nearest neighbors search performance
  3. Is automatically versioned and supports lineage and time-travel for full reproducibility
  4. Integrated with duckdb/pandas/polars already. Easily convert from/to parquet in 2 lines of code

Quick start

Installation

pip install pylance

Make sure you have a recent version of pandas (1.5+), pyarrow (10.0+), and DuckDB (0.7.0+)

Converting to Lance

import lance

import pandas as pd
import pyarrow as pa
import pyarrow.dataset

df = pd.DataFrame({"a": [5], "b": [10]})
uri = "/tmp/test.parquet"
tbl = pa.Table.from_pandas(df)
pa.dataset.write_dataset(tbl, uri, format='parquet')

parquet = pa.dataset.dataset(uri, format='parquet')
lance.write_dataset(parquet, "/tmp/test.lance")

Reading Lance data

dataset = lance.dataset("/tmp/test.lance")
assert isinstance(dataset, pa.dataset.Dataset)

Pandas

df = dataset.to_table().to_pandas()

DuckDB

import duckdb

# If this segfaults, make sure you have duckdb v0.7+ installed
duckdb.query("SELECT * FROM dataset LIMIT 10").to_df()

Vector search

Download the sift1m subset

wget ftp://ftp.irisa.fr/local/texmex/corpus/sift.tar.gz
tar -xzf sift.tar.gz

Convert it to Lance

import lance
from lance.vector import vec_to_table
import numpy as np
import struct

nvecs = 1000000
ndims = 128
with open("sift/sift_base.fvecs", mode="rb") as fobj:
    buf = fobj.read()
    data = np.array(struct.unpack("<128000000f", buf[4 : 4 + 4 * nvecs * ndims])).reshape((nvecs, ndims))
    dd = dict(zip(range(nvecs), data))

table = vec_to_table(dd)
uri = "vec_data.lance"
sift1m = lance.write_dataset(table, uri, max_rows_per_group=8192, max_rows_per_file=1024*1024)

Build the index

sift1m.create_index("vector",
                    index_type="IVF_PQ", 
                    num_partitions=256,  # IVF
                    num_sub_vectors=16)  # PQ

Search the dataset

# Get top 10 similar vectors
import duckdb

dataset = lance.dataset(uri)

# Sample 100 query vectors. If this segfaults, make sure you have duckdb v0.7+ installed
sample = duckdb.query("SELECT vector FROM dataset USING SAMPLE 100").to_df()
query_vectors = np.array([np.array(x) for x in sample.vector])

# Get nearest neighbors for all of them
rs = [dataset.to_table(nearest={"column": "vector", "k": 10, "q": q})      
      for q in query_vectors]

*More distance metrics, HNSW, and distributed support is on the roadmap

Python package details

Install from PyPI: pip install pylance # >=0.3.0 is the new rust-based implementation Install from source: maturin develop (under the /python directory) Run unit tests: make test Run integration tests: make integtest

Import via: import lance

The python integration is done via pyo3 + custom python code:

  1. We make wrapper classes in Rust for Dataset/Scanner/RecordBatchReader that's exposed to python.
  2. These are then used by LanceDataset / LanceScanner implementations that extend pyarrow Dataset/Scanner for duckdb compat.
  3. Data is delivered via the Arrow C Data Interface

Motivation

Why do we need a new format for data science and machine learning?

1. Reproducibility is a must-have

Versioning and experimentation support should be built into the dataset instead of requiring multiple tools.
It should also be efficient and not require expensive copying everytime you want to create a new version.
We call this "Zero copy versioning" in Lance. It makes versioning data easy without increasing storage costs.

2. Cloud storage is now the default

Remote object storage is the default now for data science and machine learning and the performance characteristics of cloud are fundamentally different.
Lance format is optimized to be cloud native. Common operations like filter-then-take can be order of magnitude faster using Lance than Parquet, especially for ML data.

3. Vectors must be a first class citizen, not a separate thing

The majority of reasonable scale workflows should not require the added complexity and cost of a specialized database just to compute vector similarity. Lance integrates optimized vector indices into a columnar format so no additional infrastructure is required to get low latency top-K similarity search.

4. Open standards is a requirement

The DS/ML ecosystem is incredibly rich and data must be easily accessible across different languages, tools, and environments. Lance makes Apache Arrow integration its primary interface, which means conversions to/from is 2 lines of code, your code does not need to change after conversion, and nothing is locked-up to force you to pay for vendor compute. We need open-source not fauxpen-source.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pylance-0.10.7-cp38-abi3-win_amd64.whl (22.4 MB view details)

Uploaded CPython 3.8+ Windows x86-64

pylance-0.10.7-cp38-abi3-manylinux_2_28_x86_64.whl (22.1 MB view details)

Uploaded CPython 3.8+ manylinux: glibc 2.28+ x86-64

pylance-0.10.7-cp38-abi3-manylinux_2_24_aarch64.whl (20.4 MB view details)

Uploaded CPython 3.8+ manylinux: glibc 2.24+ ARM64

pylance-0.10.7-cp38-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (22.1 MB view details)

Uploaded CPython 3.8+ manylinux: glibc 2.17+ x86-64

pylance-0.10.7-cp38-abi3-macosx_11_0_arm64.whl (19.2 MB view details)

Uploaded CPython 3.8+ macOS 11.0+ ARM64

pylance-0.10.7-cp38-abi3-macosx_10_15_x86_64.whl (21.0 MB view details)

Uploaded CPython 3.8+ macOS 10.15+ x86-64

File details

Details for the file pylance-0.10.7-cp38-abi3-win_amd64.whl.

File metadata

  • Download URL: pylance-0.10.7-cp38-abi3-win_amd64.whl
  • Upload date:
  • Size: 22.4 MB
  • Tags: CPython 3.8+, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.8.10

File hashes

Hashes for pylance-0.10.7-cp38-abi3-win_amd64.whl
Algorithm Hash digest
SHA256 d65c8d9eab02c53777258f17ab0c7c13d42ab875f78c19847a22546a1ec89353
MD5 0f2a9a80d764d321f939cac8ff8a8f5e
BLAKE2b-256 b3cfadb9b5a4cdc9a8646c2c887a5a7426a5080017a8c72f674807466f3a0c98

See more details on using hashes here.

Provenance

File details

Details for the file pylance-0.10.7-cp38-abi3-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for pylance-0.10.7-cp38-abi3-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 079e1e8d1368c195978f863afd70386b0d588b6824c3a5070d9f043b3e141de3
MD5 1c4c69c1b345aa6526227df4cd11438b
BLAKE2b-256 9d6fb40a08cdf7faab5309b71bd502257f55cfd429f19b9e5cf2334556b71335

See more details on using hashes here.

Provenance

File details

Details for the file pylance-0.10.7-cp38-abi3-manylinux_2_24_aarch64.whl.

File metadata

File hashes

Hashes for pylance-0.10.7-cp38-abi3-manylinux_2_24_aarch64.whl
Algorithm Hash digest
SHA256 c39101827ad5eb6cc3dc5d19ae70d8c7d418899950e6afe92b93bf574dee5853
MD5 3e6b9899c7e4caeefe46be0007e79bfc
BLAKE2b-256 9e4d3ece71d523054a04e1e63a2e5dfa51e9c0431a4c3c3e7303535333754768

See more details on using hashes here.

Provenance

File details

Details for the file pylance-0.10.7-cp38-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pylance-0.10.7-cp38-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1c53363bc1652e5bcb58a70f29d39701e3175f8bb3d7105de0c1c800218c3ed3
MD5 a3b8f3c2a0f0d56df712d928788c3631
BLAKE2b-256 52b4acc19a003b3e2dc2b386cd919a3713c80652071b86887b065d47db98ddf4

See more details on using hashes here.

Provenance

File details

Details for the file pylance-0.10.7-cp38-abi3-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pylance-0.10.7-cp38-abi3-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 840b8d3fb03dcde4d68698e55500789b7dde6373a36a4ea734be685c0f13b8de
MD5 1190c0537765fb263646be1c8d4a17c6
BLAKE2b-256 f0304269f18b54a5b7657540215a994db83aa2432e942bb63ad46d6fcb344cd4

See more details on using hashes here.

Provenance

File details

Details for the file pylance-0.10.7-cp38-abi3-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for pylance-0.10.7-cp38-abi3-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 d40c69ca27fde0b9f0a495b698a88a37569778f49810d080e1d13eb19ebaa374
MD5 825b063f4644fb6e14cd97edcf0f16fc
BLAKE2b-256 fc4f4b8f7d8824fa2198a2bd04dbcba48ff1ed80874b35e5317c09938e666067

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page