Skip to main content

python wrapper for Lance columnar format

Project description

Python bindings for Lance Data Format

:warning: Under heavy development

Lance Logo

Lance is a new columnar data format for data science and machine learning

Why you should use Lance

  1. Is order of magnitude faster than parquet for point queries and nested data structures common to DS/ML
  2. Comes with a fast vector index that delivers sub-millisecond nearest neighbors search performance
  3. Is automatically versioned and supports lineage and time-travel for full reproducibility
  4. Integrated with duckdb/pandas/polars already. Easily convert from/to parquet in 2 lines of code

Quick start

Installation

pip install pylance

Make sure you have a recent version of pandas (1.5+), pyarrow (10.0+), and DuckDB (0.7.0+)

Converting to Lance

import lance

import pandas as pd
import pyarrow as pa
import pyarrow.dataset

df = pd.DataFrame({"a": [5], "b": [10]})
uri = "/tmp/test.parquet"
tbl = pa.Table.from_pandas(df)
pa.dataset.write_dataset(tbl, uri, format='parquet')

parquet = pa.dataset.dataset(uri, format='parquet')
lance.write_dataset(parquet, "/tmp/test.lance")

Reading Lance data

dataset = lance.dataset("/tmp/test.lance")
assert isinstance(dataset, pa.dataset.Dataset)

Pandas

df = dataset.to_table().to_pandas()

DuckDB

import duckdb

# If this segfaults, make sure you have duckdb v0.7+ installed
duckdb.query("SELECT * FROM dataset LIMIT 10").to_df()

Vector search

Download the sift1m subset

wget ftp://ftp.irisa.fr/local/texmex/corpus/sift.tar.gz
tar -xzf sift.tar.gz

Convert it to Lance

import lance
from lance.vector import vec_to_table
import numpy as np
import struct

nvecs = 1000000
ndims = 128
with open("sift/sift_base.fvecs", mode="rb") as fobj:
    buf = fobj.read()
    data = np.array(struct.unpack("<128000000f", buf[4 : 4 + 4 * nvecs * ndims])).reshape((nvecs, ndims))
    dd = dict(zip(range(nvecs), data))

table = vec_to_table(dd)
uri = "vec_data.lance"
sift1m = lance.write_dataset(table, uri, max_rows_per_group=8192, max_rows_per_file=1024*1024)

Build the index

sift1m.create_index("vector",
                    index_type="IVF_PQ", 
                    num_partitions=256,  # IVF
                    num_sub_vectors=16)  # PQ

Search the dataset

# Get top 10 similar vectors
import duckdb

dataset = lance.dataset(uri)

# Sample 100 query vectors. If this segfaults, make sure you have duckdb v0.7+ installed
sample = duckdb.query("SELECT vector FROM dataset USING SAMPLE 100").to_df()
query_vectors = np.array([np.array(x) for x in sample.vector])

# Get nearest neighbors for all of them
rs = [dataset.to_table(nearest={"column": "vector", "k": 10, "q": q})      
      for q in query_vectors]

*More distance metrics, HNSW, and distributed support is on the roadmap

Python package details

Install from PyPI: pip install pylance # >=0.3.0 is the new rust-based implementation Install from source: maturin develop (under the /python directory) Run unit tests: make test Run integration tests: make integtest

Import via: import lance

The python integration is done via pyo3 + custom python code:

  1. We make wrapper classes in Rust for Dataset/Scanner/RecordBatchReader that's exposed to python.
  2. These are then used by LanceDataset / LanceScanner implementations that extend pyarrow Dataset/Scanner for duckdb compat.
  3. Data is delivered via the Arrow C Data Interface

Motivation

Why do we need a new format for data science and machine learning?

1. Reproducibility is a must-have

Versioning and experimentation support should be built into the dataset instead of requiring multiple tools.
It should also be efficient and not require expensive copying everytime you want to create a new version.
We call this "Zero copy versioning" in Lance. It makes versioning data easy without increasing storage costs.

2. Cloud storage is now the default

Remote object storage is the default now for data science and machine learning and the performance characteristics of cloud are fundamentally different.
Lance format is optimized to be cloud native. Common operations like filter-then-take can be order of magnitude faster using Lance than Parquet, especially for ML data.

3. Vectors must be a first class citizen, not a separate thing

The majority of reasonable scale workflows should not require the added complexity and cost of a specialized database just to compute vector similarity. Lance integrates optimized vector indices into a columnar format so no additional infrastructure is required to get low latency top-K similarity search.

4. Open standards is a requirement

The DS/ML ecosystem is incredibly rich and data must be easily accessible across different languages, tools, and environments. Lance makes Apache Arrow integration its primary interface, which means conversions to/from is 2 lines of code, your code does not need to change after conversion, and nothing is locked-up to force you to pay for vendor compute. We need open-source not fauxpen-source.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pylance-0.10.8-cp38-abi3-win_amd64.whl (22.4 MB view details)

Uploaded CPython 3.8+ Windows x86-64

pylance-0.10.8-cp38-abi3-manylinux_2_28_x86_64.whl (22.1 MB view details)

Uploaded CPython 3.8+ manylinux: glibc 2.28+ x86-64

pylance-0.10.8-cp38-abi3-manylinux_2_24_aarch64.whl (20.4 MB view details)

Uploaded CPython 3.8+ manylinux: glibc 2.24+ ARM64

pylance-0.10.8-cp38-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (22.1 MB view details)

Uploaded CPython 3.8+ manylinux: glibc 2.17+ x86-64

pylance-0.10.8-cp38-abi3-macosx_11_0_arm64.whl (19.3 MB view details)

Uploaded CPython 3.8+ macOS 11.0+ ARM64

pylance-0.10.8-cp38-abi3-macosx_10_15_x86_64.whl (21.0 MB view details)

Uploaded CPython 3.8+ macOS 10.15+ x86-64

File details

Details for the file pylance-0.10.8-cp38-abi3-win_amd64.whl.

File metadata

  • Download URL: pylance-0.10.8-cp38-abi3-win_amd64.whl
  • Upload date:
  • Size: 22.4 MB
  • Tags: CPython 3.8+, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.8.10

File hashes

Hashes for pylance-0.10.8-cp38-abi3-win_amd64.whl
Algorithm Hash digest
SHA256 aa7c663076f54fc8edd6661e5f2e0b21f154f83f50d13a2bffdfd54e3e1cd1ec
MD5 811c09eb395b7c29cee90a25f1c8a9fc
BLAKE2b-256 eb929d51d658e1ee9fe4430ccf56ca1a333f79acb2041a1a0a22f091b4e772bc

See more details on using hashes here.

Provenance

File details

Details for the file pylance-0.10.8-cp38-abi3-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for pylance-0.10.8-cp38-abi3-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 15c3c6bc5924be7289e85ea32a8355939f57f1a965dff6e457241bd689af7707
MD5 48d7c0f5e717b67e057caf35c9ca855a
BLAKE2b-256 0c0a5fddcc2528489118a9dcb15bccf1a3fe5c40da2fba087f61d75ebbdc8514

See more details on using hashes here.

Provenance

File details

Details for the file pylance-0.10.8-cp38-abi3-manylinux_2_24_aarch64.whl.

File metadata

File hashes

Hashes for pylance-0.10.8-cp38-abi3-manylinux_2_24_aarch64.whl
Algorithm Hash digest
SHA256 2ffd312cb37152161b971111b1bd61e33c55f84346d666a45aacdd3a943e2eaf
MD5 8c0e9cd0e14da893c203a9037e305d25
BLAKE2b-256 eb070832d2cbecb490bd756bd2448a8ebe391762b90eb3a75896b650160f2167

See more details on using hashes here.

Provenance

File details

Details for the file pylance-0.10.8-cp38-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pylance-0.10.8-cp38-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6c73ab6835a4dd85cf5c4f07e074807319ca6c7d9516ed1d4054bf9e15930487
MD5 755d116224403390191fc1b25ee70af4
BLAKE2b-256 5e20e5bcf11a2865deb0f74b1d6b7b085ec7d0c8d1f8833913c21d5bdfe5890e

See more details on using hashes here.

Provenance

File details

Details for the file pylance-0.10.8-cp38-abi3-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pylance-0.10.8-cp38-abi3-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 5c50e1b80ecf82ce22cafa78473da261ac325072b780f3aa7726e33e202631ab
MD5 2a9d37d552216bbe090153768e5bfbd7
BLAKE2b-256 4a85b6101909397414d0c81d997eea4b235aa026a3b44f45b0c379a37b381b8e

See more details on using hashes here.

Provenance

File details

Details for the file pylance-0.10.8-cp38-abi3-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for pylance-0.10.8-cp38-abi3-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 f7d34c951338a108492fe7c8d1c44bb84a5b4cf4617f7e25b42c720494163921
MD5 236430fe29fb9cd15443a3fe532cf362
BLAKE2b-256 4b8871f19c1beac08d85912460abdafc961003e8b9534296eb947f7c7c522820

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page