Skip to main content

python wrapper for Lance columnar format

Project description

Python bindings for Lance Data Format

:warning: Under heavy development

Lance Logo

Lance is a new columnar data format for data science and machine learning

Why you should use Lance

  1. Is order of magnitude faster than parquet for point queries and nested data structures common to DS/ML
  2. Comes with a fast vector index that delivers sub-millisecond nearest neighbors search performance
  3. Is automatically versioned and supports lineage and time-travel for full reproducibility
  4. Integrated with duckdb/pandas/polars already. Easily convert from/to parquet in 2 lines of code

Quick start

Installation

pip install pylance

Make sure you have a recent version of pandas (1.5+), pyarrow (10.0+), and DuckDB (0.7.0+)

Converting to Lance

import lance

import pandas as pd
import pyarrow as pa
import pyarrow.dataset

df = pd.DataFrame({"a": [5], "b": [10]})
uri = "/tmp/test.parquet"
tbl = pa.Table.from_pandas(df)
pa.dataset.write_dataset(tbl, uri, format='parquet')

parquet = pa.dataset.dataset(uri, format='parquet')
lance.write_dataset(parquet, "/tmp/test.lance")

Reading Lance data

dataset = lance.dataset("/tmp/test.lance")
assert isinstance(dataset, pa.dataset.Dataset)

Pandas

df = dataset.to_table().to_pandas()

DuckDB

import duckdb

# If this segfaults, make sure you have duckdb v0.7+ installed
duckdb.query("SELECT * FROM dataset LIMIT 10").to_df()

Vector search

Download the sift1m subset

wget ftp://ftp.irisa.fr/local/texmex/corpus/sift.tar.gz
tar -xzf sift.tar.gz

Convert it to Lance

import lance
from lance.vector import vec_to_table
import numpy as np
import struct

nvecs = 1000000
ndims = 128
with open("sift/sift_base.fvecs", mode="rb") as fobj:
    buf = fobj.read()
    data = np.array(struct.unpack("<128000000f", buf[4 : 4 + 4 * nvecs * ndims])).reshape((nvecs, ndims))
    dd = dict(zip(range(nvecs), data))

table = vec_to_table(dd)
uri = "vec_data.lance"
sift1m = lance.write_dataset(table, uri, max_rows_per_group=8192, max_rows_per_file=1024*1024)

Build the index

sift1m.create_index("vector",
                    index_type="IVF_PQ", 
                    num_partitions=256,  # IVF
                    num_sub_vectors=16)  # PQ

Search the dataset

# Get top 10 similar vectors
import duckdb

dataset = lance.dataset(uri)

# Sample 100 query vectors. If this segfaults, make sure you have duckdb v0.7+ installed
sample = duckdb.query("SELECT vector FROM dataset USING SAMPLE 100").to_df()
query_vectors = np.array([np.array(x) for x in sample.vector])

# Get nearest neighbors for all of them
rs = [dataset.to_table(nearest={"column": "vector", "k": 10, "q": q})      
      for q in query_vectors]

*More distance metrics, HNSW, and distributed support is on the roadmap

Python package details

Install from PyPI: pip install pylance # >=0.3.0 is the new rust-based implementation Install from source: maturin develop (under the /python directory) Run unit tests: make test Run integration tests: make integtest

Import via: import lance

The python integration is done via pyo3 + custom python code:

  1. We make wrapper classes in Rust for Dataset/Scanner/RecordBatchReader that's exposed to python.
  2. These are then used by LanceDataset / LanceScanner implementations that extend pyarrow Dataset/Scanner for duckdb compat.
  3. Data is delivered via the Arrow C Data Interface

Motivation

Why do we need a new format for data science and machine learning?

1. Reproducibility is a must-have

Versioning and experimentation support should be built into the dataset instead of requiring multiple tools.
It should also be efficient and not require expensive copying everytime you want to create a new version.
We call this "Zero copy versioning" in Lance. It makes versioning data easy without increasing storage costs.

2. Cloud storage is now the default

Remote object storage is the default now for data science and machine learning and the performance characteristics of cloud are fundamentally different.
Lance format is optimized to be cloud native. Common operations like filter-then-take can be order of magnitude faster using Lance than Parquet, especially for ML data.

3. Vectors must be a first class citizen, not a separate thing

The majority of reasonable scale workflows should not require the added complexity and cost of a specialized database just to compute vector similarity. Lance integrates optimized vector indices into a columnar format so no additional infrastructure is required to get low latency top-K similarity search.

4. Open standards is a requirement

The DS/ML ecosystem is incredibly rich and data must be easily accessible across different languages, tools, and environments. Lance makes Apache Arrow integration its primary interface, which means conversions to/from is 2 lines of code, your code does not need to change after conversion, and nothing is locked-up to force you to pay for vendor compute. We need open-source not fauxpen-source.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pylance-0.11.0-cp39-abi3-win_amd64.whl (23.2 MB view details)

Uploaded CPython 3.9+ Windows x86-64

pylance-0.11.0-cp39-abi3-manylinux_2_28_x86_64.whl (22.8 MB view details)

Uploaded CPython 3.9+ manylinux: glibc 2.28+ x86-64

pylance-0.11.0-cp39-abi3-manylinux_2_24_aarch64.whl (20.9 MB view details)

Uploaded CPython 3.9+ manylinux: glibc 2.24+ ARM64

pylance-0.11.0-cp39-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (22.8 MB view details)

Uploaded CPython 3.9+ manylinux: glibc 2.17+ x86-64

pylance-0.11.0-cp39-abi3-macosx_11_0_arm64.whl (19.9 MB view details)

Uploaded CPython 3.9+ macOS 11.0+ ARM64

pylance-0.11.0-cp39-abi3-macosx_10_15_x86_64.whl (21.6 MB view details)

Uploaded CPython 3.9+ macOS 10.15+ x86-64

File details

Details for the file pylance-0.11.0-cp39-abi3-win_amd64.whl.

File metadata

  • Download URL: pylance-0.11.0-cp39-abi3-win_amd64.whl
  • Upload date:
  • Size: 23.2 MB
  • Tags: CPython 3.9+, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.9.13

File hashes

Hashes for pylance-0.11.0-cp39-abi3-win_amd64.whl
Algorithm Hash digest
SHA256 fe5ede7168f5afc67232818eddc57e086cb7579151e9a34b52c3d9fabc7575aa
MD5 f9ccb054c658b2ee0422ad6d53d2bb78
BLAKE2b-256 e17917a28e887bdc9a5d5d884a26b4023ce506b6bcfd2b230ddcfcf6433049c0

See more details on using hashes here.

Provenance

File details

Details for the file pylance-0.11.0-cp39-abi3-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for pylance-0.11.0-cp39-abi3-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 ab0893b77e6ae5d9bb2bf21c0f6e199c81071034d5dbfb42787abdff8bfe8ef7
MD5 c58b3e025df6a9cb256bd9c0a529a5a6
BLAKE2b-256 fc737193d4da9888b32a5973d9fef4e39c9c50d3e6bed52f5802d148de7f7672

See more details on using hashes here.

Provenance

File details

Details for the file pylance-0.11.0-cp39-abi3-manylinux_2_24_aarch64.whl.

File metadata

File hashes

Hashes for pylance-0.11.0-cp39-abi3-manylinux_2_24_aarch64.whl
Algorithm Hash digest
SHA256 c40252ff325e401116dec3c2010a8011ab5c15915237bee11b97697197b1d0b8
MD5 ab581c27fa58350f39b8a4dee1d611ae
BLAKE2b-256 4d011a896908283636cf3a837e76e5aad6ca7850bd377816b200c84f307b1c58

See more details on using hashes here.

Provenance

File details

Details for the file pylance-0.11.0-cp39-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pylance-0.11.0-cp39-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 cf1d3badbfb111d1f193363422940bcfcae45755b60f14fe2153614e65e63d13
MD5 7a48b75fd98b2c12e4c73964f2fde18c
BLAKE2b-256 511c2752ebf94604cdcf41816964b523baf66b0e05e3b442f7db016bd7ccf358

See more details on using hashes here.

Provenance

File details

Details for the file pylance-0.11.0-cp39-abi3-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pylance-0.11.0-cp39-abi3-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 c50bd63eaca846fb812109b6ea62a81873797901b4aff808fc8a96aa1994bf52
MD5 0a1548a38bd38478d958f0eecfe8e8d5
BLAKE2b-256 d76ed2cb7f271dabf9ca0c5d3e2e07d335bb8ef7e3d639b3a5885e50dde77678

See more details on using hashes here.

Provenance

File details

Details for the file pylance-0.11.0-cp39-abi3-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for pylance-0.11.0-cp39-abi3-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 3405e217fcb3a75662957605621f7eebb34f35b10c49a00ea1ddef478e0567db
MD5 ee509f3e8a338aedcd5ff5fa62adc61c
BLAKE2b-256 0a1c2a0bae7ea6cc161a605e316dc4691f717820c99de4b8e631c6fdce8c7f6f

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page