Skip to main content

python wrapper for Lance columnar format

Project description

Python bindings for Lance Data Format

:warning: Under heavy development

Lance Logo

Lance is a new columnar data format for data science and machine learning

Why you should use Lance

  1. Is order of magnitude faster than parquet for point queries and nested data structures common to DS/ML
  2. Comes with a fast vector index that delivers sub-millisecond nearest neighbors search performance
  3. Is automatically versioned and supports lineage and time-travel for full reproducibility
  4. Integrated with duckdb/pandas/polars already. Easily convert from/to parquet in 2 lines of code

Quick start

Installation

pip install pylance

Make sure you have a recent version of pandas (1.5+), pyarrow (10.0+), and DuckDB (0.7.0+)

Converting to Lance

import lance

import pandas as pd
import pyarrow as pa
import pyarrow.dataset

df = pd.DataFrame({"a": [5], "b": [10]})
uri = "/tmp/test.parquet"
tbl = pa.Table.from_pandas(df)
pa.dataset.write_dataset(tbl, uri, format='parquet')

parquet = pa.dataset.dataset(uri, format='parquet')
lance.write_dataset(parquet, "/tmp/test.lance")

Reading Lance data

dataset = lance.dataset("/tmp/test.lance")
assert isinstance(dataset, pa.dataset.Dataset)

Pandas

df = dataset.to_table().to_pandas()

DuckDB

import duckdb

# If this segfaults, make sure you have duckdb v0.7+ installed
duckdb.query("SELECT * FROM dataset LIMIT 10").to_df()

Vector search

Download the sift1m subset

wget ftp://ftp.irisa.fr/local/texmex/corpus/sift.tar.gz
tar -xzf sift.tar.gz

Convert it to Lance

import lance
from lance.vector import vec_to_table
import numpy as np
import struct

nvecs = 1000000
ndims = 128
with open("sift/sift_base.fvecs", mode="rb") as fobj:
    buf = fobj.read()
    data = np.array(struct.unpack("<128000000f", buf[4 : 4 + 4 * nvecs * ndims])).reshape((nvecs, ndims))
    dd = dict(zip(range(nvecs), data))

table = vec_to_table(dd)
uri = "vec_data.lance"
sift1m = lance.write_dataset(table, uri, max_rows_per_group=8192, max_rows_per_file=1024*1024)

Build the index

sift1m.create_index("vector",
                    index_type="IVF_PQ", 
                    num_partitions=256,  # IVF
                    num_sub_vectors=16)  # PQ

Search the dataset

# Get top 10 similar vectors
import duckdb

dataset = lance.dataset(uri)

# Sample 100 query vectors. If this segfaults, make sure you have duckdb v0.7+ installed
sample = duckdb.query("SELECT vector FROM dataset USING SAMPLE 100").to_df()
query_vectors = np.array([np.array(x) for x in sample.vector])

# Get nearest neighbors for all of them
rs = [dataset.to_table(nearest={"column": "vector", "k": 10, "q": q})      
      for q in query_vectors]

*More distance metrics, HNSW, and distributed support is on the roadmap

Python package details

Install from PyPI: pip install pylance # >=0.3.0 is the new rust-based implementation Install from source: maturin develop (under the /python directory) Run unit tests: make test Run integration tests: make integtest

Import via: import lance

The python integration is done via pyo3 + custom python code:

  1. We make wrapper classes in Rust for Dataset/Scanner/RecordBatchReader that's exposed to python.
  2. These are then used by LanceDataset / LanceScanner implementations that extend pyarrow Dataset/Scanner for duckdb compat.
  3. Data is delivered via the Arrow C Data Interface

Motivation

Why do we need a new format for data science and machine learning?

1. Reproducibility is a must-have

Versioning and experimentation support should be built into the dataset instead of requiring multiple tools.
It should also be efficient and not require expensive copying everytime you want to create a new version.
We call this "Zero copy versioning" in Lance. It makes versioning data easy without increasing storage costs.

2. Cloud storage is now the default

Remote object storage is the default now for data science and machine learning and the performance characteristics of cloud are fundamentally different.
Lance format is optimized to be cloud native. Common operations like filter-then-take can be order of magnitude faster using Lance than Parquet, especially for ML data.

3. Vectors must be a first class citizen, not a separate thing

The majority of reasonable scale workflows should not require the added complexity and cost of a specialized database just to compute vector similarity. Lance integrates optimized vector indices into a columnar format so no additional infrastructure is required to get low latency top-K similarity search.

4. Open standards is a requirement

The DS/ML ecosystem is incredibly rich and data must be easily accessible across different languages, tools, and environments. Lance makes Apache Arrow integration its primary interface, which means conversions to/from is 2 lines of code, your code does not need to change after conversion, and nothing is locked-up to force you to pay for vendor compute. We need open-source not fauxpen-source.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pylance-0.12.1-cp39-abi3-win_amd64.whl (23.4 MB view details)

Uploaded CPython 3.9+ Windows x86-64

pylance-0.12.1-cp39-abi3-manylinux_2_28_x86_64.whl (23.1 MB view details)

Uploaded CPython 3.9+ manylinux: glibc 2.28+ x86-64

pylance-0.12.1-cp39-abi3-manylinux_2_24_aarch64.whl (21.1 MB view details)

Uploaded CPython 3.9+ manylinux: glibc 2.24+ ARM64

pylance-0.12.1-cp39-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (23.1 MB view details)

Uploaded CPython 3.9+ manylinux: glibc 2.17+ x86-64

pylance-0.12.1-cp39-abi3-macosx_11_0_arm64.whl (20.1 MB view details)

Uploaded CPython 3.9+ macOS 11.0+ ARM64

pylance-0.12.1-cp39-abi3-macosx_10_15_x86_64.whl (21.9 MB view details)

Uploaded CPython 3.9+ macOS 10.15+ x86-64

File details

Details for the file pylance-0.12.1-cp39-abi3-win_amd64.whl.

File metadata

  • Download URL: pylance-0.12.1-cp39-abi3-win_amd64.whl
  • Upload date:
  • Size: 23.4 MB
  • Tags: CPython 3.9+, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.9.13

File hashes

Hashes for pylance-0.12.1-cp39-abi3-win_amd64.whl
Algorithm Hash digest
SHA256 ba849ffd56cc92ee3b9dc4372feeb119b224485e9fad789f7ccafb41903478cc
MD5 56514c015a558ecbe88ce63300caaefe
BLAKE2b-256 b8ca3a5b21d379eae04cb4b2e66a6cd2007a1da2ad1159db05e10231398c4cb3

See more details on using hashes here.

Provenance

File details

Details for the file pylance-0.12.1-cp39-abi3-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for pylance-0.12.1-cp39-abi3-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 f911d2dbed75c9cbbe565181cedeb19f5380664427256cb0221a20940555535e
MD5 55b2a718b1dbab708ef6fcb5b656a7b6
BLAKE2b-256 74d3d19dfe4a139acbdf3c96ad4b28661c5a55ba1f0d9c873ec6ff1e497eba2e

See more details on using hashes here.

Provenance

File details

Details for the file pylance-0.12.1-cp39-abi3-manylinux_2_24_aarch64.whl.

File metadata

File hashes

Hashes for pylance-0.12.1-cp39-abi3-manylinux_2_24_aarch64.whl
Algorithm Hash digest
SHA256 bdeb67d1fab85e3b497e763a6544fed60b7fa39a1b76bdb6a790b36149307c2f
MD5 9e3766fc97cf5dc3b7bf3bee5b333c85
BLAKE2b-256 c1b7173f4ff1bfcc5f31a4eee31e0759f73c04d7bff055fb061812ecf223464b

See more details on using hashes here.

Provenance

File details

Details for the file pylance-0.12.1-cp39-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pylance-0.12.1-cp39-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 fb3b5ed638f5df9b71cd2b9167fd207e4397a5ee14bb02b67998ebf58cb2a905
MD5 95874ae9a709ca31279dd269aa3d83f1
BLAKE2b-256 47897332b127280f8a983acd39e743becf11ddf64fdc1cc8b7d28d923fb6857d

See more details on using hashes here.

Provenance

File details

Details for the file pylance-0.12.1-cp39-abi3-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pylance-0.12.1-cp39-abi3-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 ed64eced758da6cf6588cef42d88f2c7d5d35eb9fdc5abfe975d6b5abcd58791
MD5 4a5f88bef0aaa2ce9f25d1895710add2
BLAKE2b-256 a080a0f9f9273569c0bdfab45b23246f6679ff32882d2d8de9117ca2477bfc25

See more details on using hashes here.

Provenance

File details

Details for the file pylance-0.12.1-cp39-abi3-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for pylance-0.12.1-cp39-abi3-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 b6dca50c236b86ad42aa9dbce5c43ed7af42baa7077d75d97223d76831e2d093
MD5 ab2f48c23879ae5e151420f133f99dc0
BLAKE2b-256 e057aa48eda0c0cd2be2fb3c85ce6205e5e5880534432d568b7681e1aced15b8

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page