Skip to main content

python wrapper for Lance columnar format

Project description

Python bindings for Lance Data Format

:warning: Under heavy development

Lance Logo

Lance is a new columnar data format for data science and machine learning

Why you should use Lance

  1. Is order of magnitude faster than parquet for point queries and nested data structures common to DS/ML
  2. Comes with a fast vector index that delivers sub-millisecond nearest neighbors search performance
  3. Is automatically versioned and supports lineage and time-travel for full reproducibility
  4. Integrated with duckdb/pandas/polars already. Easily convert from/to parquet in 2 lines of code

Quick start

Installation

pip install pylance

Make sure you have a recent version of pandas (1.5+), pyarrow (10.0+), and DuckDB (0.7.0+)

Converting to Lance

import lance

import pandas as pd
import pyarrow as pa
import pyarrow.dataset

df = pd.DataFrame({"a": [5], "b": [10]})
uri = "/tmp/test.parquet"
tbl = pa.Table.from_pandas(df)
pa.dataset.write_dataset(tbl, uri, format='parquet')

parquet = pa.dataset.dataset(uri, format='parquet')
lance.write_dataset(parquet, "/tmp/test.lance")

Reading Lance data

dataset = lance.dataset("/tmp/test.lance")
assert isinstance(dataset, pa.dataset.Dataset)

Pandas

df = dataset.to_table().to_pandas()

DuckDB

import duckdb

# If this segfaults, make sure you have duckdb v0.7+ installed
duckdb.query("SELECT * FROM dataset LIMIT 10").to_df()

Vector search

Download the sift1m subset

wget ftp://ftp.irisa.fr/local/texmex/corpus/sift.tar.gz
tar -xzf sift.tar.gz

Convert it to Lance

import lance
from lance.vector import vec_to_table
import numpy as np
import struct

nvecs = 1000000
ndims = 128
with open("sift/sift_base.fvecs", mode="rb") as fobj:
    buf = fobj.read()
    data = np.array(struct.unpack("<128000000f", buf[4 : 4 + 4 * nvecs * ndims])).reshape((nvecs, ndims))
    dd = dict(zip(range(nvecs), data))

table = vec_to_table(dd)
uri = "vec_data.lance"
sift1m = lance.write_dataset(table, uri, max_rows_per_group=8192, max_rows_per_file=1024*1024)

Build the index

sift1m.create_index("vector",
                    index_type="IVF_PQ", 
                    num_partitions=256,  # IVF
                    num_sub_vectors=16)  # PQ

Search the dataset

# Get top 10 similar vectors
import duckdb

dataset = lance.dataset(uri)

# Sample 100 query vectors. If this segfaults, make sure you have duckdb v0.7+ installed
sample = duckdb.query("SELECT vector FROM dataset USING SAMPLE 100").to_df()
query_vectors = np.array([np.array(x) for x in sample.vector])

# Get nearest neighbors for all of them
rs = [dataset.to_table(nearest={"column": "vector", "k": 10, "q": q})      
      for q in query_vectors]

*More distance metrics, HNSW, and distributed support is on the roadmap

Python package details

Install from PyPI: pip install pylance # >=0.3.0 is the new rust-based implementation Install from source: maturin develop (under the /python directory) Run unit tests: make test Run integration tests: make integtest

Import via: import lance

The python integration is done via pyo3 + custom python code:

  1. We make wrapper classes in Rust for Dataset/Scanner/RecordBatchReader that's exposed to python.
  2. These are then used by LanceDataset / LanceScanner implementations that extend pyarrow Dataset/Scanner for duckdb compat.
  3. Data is delivered via the Arrow C Data Interface

Motivation

Why do we need a new format for data science and machine learning?

1. Reproducibility is a must-have

Versioning and experimentation support should be built into the dataset instead of requiring multiple tools.
It should also be efficient and not require expensive copying everytime you want to create a new version.
We call this "Zero copy versioning" in Lance. It makes versioning data easy without increasing storage costs.

2. Cloud storage is now the default

Remote object storage is the default now for data science and machine learning and the performance characteristics of cloud are fundamentally different.
Lance format is optimized to be cloud native. Common operations like filter-then-take can be order of magnitude faster using Lance than Parquet, especially for ML data.

3. Vectors must be a first class citizen, not a separate thing

The majority of reasonable scale workflows should not require the added complexity and cost of a specialized database just to compute vector similarity. Lance integrates optimized vector indices into a columnar format so no additional infrastructure is required to get low latency top-K similarity search.

4. Open standards is a requirement

The DS/ML ecosystem is incredibly rich and data must be easily accessible across different languages, tools, and environments. Lance makes Apache Arrow integration its primary interface, which means conversions to/from is 2 lines of code, your code does not need to change after conversion, and nothing is locked-up to force you to pay for vendor compute. We need open-source not fauxpen-source.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pylance-0.12.2-cp39-abi3-win_amd64.whl (23.5 MB view details)

Uploaded CPython 3.9+ Windows x86-64

pylance-0.12.2-cp39-abi3-manylinux_2_28_x86_64.whl (25.4 MB view details)

Uploaded CPython 3.9+ manylinux: glibc 2.28+ x86-64

pylance-0.12.2-cp39-abi3-manylinux_2_24_aarch64.whl (24.4 MB view details)

Uploaded CPython 3.9+ manylinux: glibc 2.24+ ARM64

pylance-0.12.2-cp39-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (25.4 MB view details)

Uploaded CPython 3.9+ manylinux: glibc 2.17+ x86-64

pylance-0.12.2-cp39-abi3-macosx_11_0_arm64.whl (20.2 MB view details)

Uploaded CPython 3.9+ macOS 11.0+ ARM64

pylance-0.12.2-cp39-abi3-macosx_10_15_x86_64.whl (22.1 MB view details)

Uploaded CPython 3.9+ macOS 10.15+ x86-64

File details

Details for the file pylance-0.12.2-cp39-abi3-win_amd64.whl.

File metadata

  • Download URL: pylance-0.12.2-cp39-abi3-win_amd64.whl
  • Upload date:
  • Size: 23.5 MB
  • Tags: CPython 3.9+, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.9.13

File hashes

Hashes for pylance-0.12.2-cp39-abi3-win_amd64.whl
Algorithm Hash digest
SHA256 fcbdb1abe42e0ac252f4bf4a7177495d93f1c60693579c8224d960d4364441f9
MD5 868d0b0f4aeaa365ae36dd94c9174e76
BLAKE2b-256 01da4cb2872abfcfc1f5c286f217436c993be70e6e19a9d6977a85f876891621

See more details on using hashes here.

Provenance

File details

Details for the file pylance-0.12.2-cp39-abi3-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for pylance-0.12.2-cp39-abi3-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 b59b35e5d6c7580a0fe29409f5e372653b407f11c8c506f003a2af649cd807af
MD5 826186ec639c63e785a5afc9296d763c
BLAKE2b-256 7ecd4dbb9ba4c94e2d14a69f29466aae640065e4ca9c7f15ae17ee0f4ffa1de9

See more details on using hashes here.

Provenance

File details

Details for the file pylance-0.12.2-cp39-abi3-manylinux_2_24_aarch64.whl.

File metadata

File hashes

Hashes for pylance-0.12.2-cp39-abi3-manylinux_2_24_aarch64.whl
Algorithm Hash digest
SHA256 66d67602b24257a3612b800e2179acf6e5fee34f45e361518c85ac31d1dafa6e
MD5 bd0b37b91d98a5d17a5afbeef606a60b
BLAKE2b-256 86c0a0562eccb0407918a80786f9e9948bcc5133fff6f0e69d00df699c0eb5a2

See more details on using hashes here.

Provenance

File details

Details for the file pylance-0.12.2-cp39-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pylance-0.12.2-cp39-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6635e095a2ca6a36d14ed0760109be6f12668b9b13b27b1d6eb1cc4d15ef4764
MD5 639606cf84ab66bedf812e04c32a6c23
BLAKE2b-256 69dacd36cdf6260a5709dac58a288ed8e3946cb06a4a0eb889ac477936036453

See more details on using hashes here.

Provenance

File details

Details for the file pylance-0.12.2-cp39-abi3-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pylance-0.12.2-cp39-abi3-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 ad915f0790a892e4add1a3ea69320050da7c2833e1dac61f3f26881a91cb221e
MD5 a1c55c50c02431311d24fdeddc91302f
BLAKE2b-256 f8be5c8ef241b5b4a48b1cea1c2e375afd0a0933bc7956340ab3a6113c7cdd5b

See more details on using hashes here.

Provenance

File details

Details for the file pylance-0.12.2-cp39-abi3-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for pylance-0.12.2-cp39-abi3-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 ffc655ed21ce30f57e14ca8a28fe41a53ff89f904eac54ff50ae4b56171f0d3a
MD5 81b6780fd30ec72f25a0fee006cd3a1e
BLAKE2b-256 21de78e94a19861baf754dc3c16010a6834804dcc47614587ce36e8b2fc40b63

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page