Skip to main content

python wrapper for Lance columnar format

Project description

Python bindings for Lance Data Format

:warning: Under heavy development

Lance Logo

Lance is a new columnar data format for data science and machine learning

Why you should use Lance

  1. Is order of magnitude faster than parquet for point queries and nested data structures common to DS/ML
  2. Comes with a fast vector index that delivers sub-millisecond nearest neighbors search performance
  3. Is automatically versioned and supports lineage and time-travel for full reproducibility
  4. Integrated with duckdb/pandas/polars already. Easily convert from/to parquet in 2 lines of code

Quick start

Installation

pip install pylance

Make sure you have a recent version of pandas (1.5+), pyarrow (10.0+), and DuckDB (0.7.0+)

Converting to Lance

import lance

import pandas as pd
import pyarrow as pa
import pyarrow.dataset

df = pd.DataFrame({"a": [5], "b": [10]})
uri = "/tmp/test.parquet"
tbl = pa.Table.from_pandas(df)
pa.dataset.write_dataset(tbl, uri, format='parquet')

parquet = pa.dataset.dataset(uri, format='parquet')
lance.write_dataset(parquet, "/tmp/test.lance")

Reading Lance data

dataset = lance.dataset("/tmp/test.lance")
assert isinstance(dataset, pa.dataset.Dataset)

Pandas

df = dataset.to_table().to_pandas()

DuckDB

import duckdb

# If this segfaults, make sure you have duckdb v0.7+ installed
duckdb.query("SELECT * FROM dataset LIMIT 10").to_df()

Vector search

Download the sift1m subset

wget ftp://ftp.irisa.fr/local/texmex/corpus/sift.tar.gz
tar -xzf sift.tar.gz

Convert it to Lance

import lance
from lance.vector import vec_to_table
import numpy as np
import struct

nvecs = 1000000
ndims = 128
with open("sift/sift_base.fvecs", mode="rb") as fobj:
    buf = fobj.read()
    data = np.array(struct.unpack("<128000000f", buf[4 : 4 + 4 * nvecs * ndims])).reshape((nvecs, ndims))
    dd = dict(zip(range(nvecs), data))

table = vec_to_table(dd)
uri = "vec_data.lance"
sift1m = lance.write_dataset(table, uri, max_rows_per_group=8192, max_rows_per_file=1024*1024)

Build the index

sift1m.create_index("vector",
                    index_type="IVF_PQ", 
                    num_partitions=256,  # IVF
                    num_sub_vectors=16)  # PQ

Search the dataset

# Get top 10 similar vectors
import duckdb

dataset = lance.dataset(uri)

# Sample 100 query vectors. If this segfaults, make sure you have duckdb v0.7+ installed
sample = duckdb.query("SELECT vector FROM dataset USING SAMPLE 100").to_df()
query_vectors = np.array([np.array(x) for x in sample.vector])

# Get nearest neighbors for all of them
rs = [dataset.to_table(nearest={"column": "vector", "k": 10, "q": q})      
      for q in query_vectors]

*More distance metrics, HNSW, and distributed support is on the roadmap

Python package details

Install from PyPI: pip install pylance # >=0.3.0 is the new rust-based implementation Install from source: maturin develop (under the /python directory) Run unit tests: make test Run integration tests: make integtest

Import via: import lance

The python integration is done via pyo3 + custom python code:

  1. We make wrapper classes in Rust for Dataset/Scanner/RecordBatchReader that's exposed to python.
  2. These are then used by LanceDataset / LanceScanner implementations that extend pyarrow Dataset/Scanner for duckdb compat.
  3. Data is delivered via the Arrow C Data Interface

Motivation

Why do we need a new format for data science and machine learning?

1. Reproducibility is a must-have

Versioning and experimentation support should be built into the dataset instead of requiring multiple tools.
It should also be efficient and not require expensive copying everytime you want to create a new version.
We call this "Zero copy versioning" in Lance. It makes versioning data easy without increasing storage costs.

2. Cloud storage is now the default

Remote object storage is the default now for data science and machine learning and the performance characteristics of cloud are fundamentally different.
Lance format is optimized to be cloud native. Common operations like filter-then-take can be order of magnitude faster using Lance than Parquet, especially for ML data.

3. Vectors must be a first class citizen, not a separate thing

The majority of reasonable scale workflows should not require the added complexity and cost of a specialized database just to compute vector similarity. Lance integrates optimized vector indices into a columnar format so no additional infrastructure is required to get low latency top-K similarity search.

4. Open standards is a requirement

The DS/ML ecosystem is incredibly rich and data must be easily accessible across different languages, tools, and environments. Lance makes Apache Arrow integration its primary interface, which means conversions to/from is 2 lines of code, your code does not need to change after conversion, and nothing is locked-up to force you to pay for vendor compute. We need open-source not fauxpen-source.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pylance-0.12.3-cp39-abi3-win_amd64.whl (23.6 MB view details)

Uploaded CPython 3.9+ Windows x86-64

pylance-0.12.3-cp39-abi3-manylinux_2_28_x86_64.whl (25.4 MB view details)

Uploaded CPython 3.9+ manylinux: glibc 2.28+ x86-64

pylance-0.12.3-cp39-abi3-manylinux_2_24_aarch64.whl (24.5 MB view details)

Uploaded CPython 3.9+ manylinux: glibc 2.24+ ARM64

pylance-0.12.3-cp39-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (25.4 MB view details)

Uploaded CPython 3.9+ manylinux: glibc 2.17+ x86-64

pylance-0.12.3-cp39-abi3-macosx_11_0_arm64.whl (20.1 MB view details)

Uploaded CPython 3.9+ macOS 11.0+ ARM64

pylance-0.12.3-cp39-abi3-macosx_10_15_x86_64.whl (22.0 MB view details)

Uploaded CPython 3.9+ macOS 10.15+ x86-64

File details

Details for the file pylance-0.12.3-cp39-abi3-win_amd64.whl.

File metadata

  • Download URL: pylance-0.12.3-cp39-abi3-win_amd64.whl
  • Upload date:
  • Size: 23.6 MB
  • Tags: CPython 3.9+, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.9.13

File hashes

Hashes for pylance-0.12.3-cp39-abi3-win_amd64.whl
Algorithm Hash digest
SHA256 987cc4e3f5e01815bd93b8667d871d0d54b255be971b59ef499d31480280621c
MD5 7db4c496ba1bd19d5aa1466a661337f0
BLAKE2b-256 e86d7ca5fd88a84d365fb3c8770cbe8dbf7d612d24a72cf47509fe17affb4fcf

See more details on using hashes here.

Provenance

File details

Details for the file pylance-0.12.3-cp39-abi3-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for pylance-0.12.3-cp39-abi3-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 0e4e9ed64fd715d508672b954cb5a9a390ffd506c78363ba1ddce4bf37ce5e4c
MD5 0d90098b99bcc2f6382505eeeab2a911
BLAKE2b-256 22b594005fcedf11d866152b37d7cc2901b70f434e71d32d49c769d1cd486ca3

See more details on using hashes here.

Provenance

File details

Details for the file pylance-0.12.3-cp39-abi3-manylinux_2_24_aarch64.whl.

File metadata

File hashes

Hashes for pylance-0.12.3-cp39-abi3-manylinux_2_24_aarch64.whl
Algorithm Hash digest
SHA256 b7789b3c4ceaafd14ae9f6ec2f0dc09e45d6106a892ada90a448791a8f1f50e8
MD5 25b7d8a25c94f139caf7a55b18f793fc
BLAKE2b-256 b3b9580b20693ac589aedce27aa8949903049bf8c3cb0e0b6b255bde0524d76f

See more details on using hashes here.

Provenance

File details

Details for the file pylance-0.12.3-cp39-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pylance-0.12.3-cp39-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b21954237bd2ad0a8ef9266ef45d37191b54ea6ba39bb6ffc6ef568ff65b9220
MD5 32dd7f7d49f83a98276dcafa7488cb58
BLAKE2b-256 d54e9af185de545db4441b7ef072193347e4a97015788b1702c44097fba30253

See more details on using hashes here.

Provenance

File details

Details for the file pylance-0.12.3-cp39-abi3-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pylance-0.12.3-cp39-abi3-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 c9612277cca1b9087a9284a7504db6bd67d848593f0ba50e306301dc6d262376
MD5 2f67a3479be8ca4be6559b9723cb232f
BLAKE2b-256 8a6605e558e74ecd056223ae4a2d4c6c88a069206ab9258d3621885b23119b0a

See more details on using hashes here.

Provenance

File details

Details for the file pylance-0.12.3-cp39-abi3-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for pylance-0.12.3-cp39-abi3-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 36207cafb78e475c9366b207ef18d0eb7caf5f08e566b124617d75266347f92c
MD5 8838c8ed8f1073a78976db852639f644
BLAKE2b-256 8828d897824743a52c8684a6dfda456468d17b2dfa9b71b42db00243e3d91b1e

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page