Skip to main content

python wrapper for Lance columnar format

Project description

Python bindings for Lance Data Format

:warning: Under heavy development

Lance Logo

Lance is a new columnar data format for data science and machine learning

Why you should use Lance

  1. Is order of magnitude faster than parquet for point queries and nested data structures common to DS/ML
  2. Comes with a fast vector index that delivers sub-millisecond nearest neighbors search performance
  3. Is automatically versioned and supports lineage and time-travel for full reproducibility
  4. Integrated with duckdb/pandas/polars already. Easily convert from/to parquet in 2 lines of code

Quick start

Installation

pip install pylance

Make sure you have a recent version of pandas (1.5+), pyarrow (10.0+), and DuckDB (0.7.0+)

Converting to Lance

import lance

import pandas as pd
import pyarrow as pa
import pyarrow.dataset

df = pd.DataFrame({"a": [5], "b": [10]})
uri = "/tmp/test.parquet"
tbl = pa.Table.from_pandas(df)
pa.dataset.write_dataset(tbl, uri, format='parquet')

parquet = pa.dataset.dataset(uri, format='parquet')
lance.write_dataset(parquet, "/tmp/test.lance")

Reading Lance data

dataset = lance.dataset("/tmp/test.lance")
assert isinstance(dataset, pa.dataset.Dataset)

Pandas

df = dataset.to_table().to_pandas()

DuckDB

import duckdb

# If this segfaults, make sure you have duckdb v0.7+ installed
duckdb.query("SELECT * FROM dataset LIMIT 10").to_df()

Vector search

Download the sift1m subset

wget ftp://ftp.irisa.fr/local/texmex/corpus/sift.tar.gz
tar -xzf sift.tar.gz

Convert it to Lance

import lance
from lance.vector import vec_to_table
import numpy as np
import struct

nvecs = 1000000
ndims = 128
with open("sift/sift_base.fvecs", mode="rb") as fobj:
    buf = fobj.read()
    data = np.array(struct.unpack("<128000000f", buf[4 : 4 + 4 * nvecs * ndims])).reshape((nvecs, ndims))
    dd = dict(zip(range(nvecs), data))

table = vec_to_table(dd)
uri = "vec_data.lance"
sift1m = lance.write_dataset(table, uri, max_rows_per_group=8192, max_rows_per_file=1024*1024)

Build the index

sift1m.create_index("vector",
                    index_type="IVF_PQ", 
                    num_partitions=256,  # IVF
                    num_sub_vectors=16)  # PQ

Search the dataset

# Get top 10 similar vectors
import duckdb

dataset = lance.dataset(uri)

# Sample 100 query vectors. If this segfaults, make sure you have duckdb v0.7+ installed
sample = duckdb.query("SELECT vector FROM dataset USING SAMPLE 100").to_df()
query_vectors = np.array([np.array(x) for x in sample.vector])

# Get nearest neighbors for all of them
rs = [dataset.to_table(nearest={"column": "vector", "k": 10, "q": q})      
      for q in query_vectors]

*More distance metrics, HNSW, and distributed support is on the roadmap

Python package details

Install from PyPI: pip install pylance # >=0.3.0 is the new rust-based implementation Install from source: maturin develop (under the /python directory) Run unit tests: make test Run integration tests: make integtest

Import via: import lance

The python integration is done via pyo3 + custom python code:

  1. We make wrapper classes in Rust for Dataset/Scanner/RecordBatchReader that's exposed to python.
  2. These are then used by LanceDataset / LanceScanner implementations that extend pyarrow Dataset/Scanner for duckdb compat.
  3. Data is delivered via the Arrow C Data Interface

Motivation

Why do we need a new format for data science and machine learning?

1. Reproducibility is a must-have

Versioning and experimentation support should be built into the dataset instead of requiring multiple tools.
It should also be efficient and not require expensive copying everytime you want to create a new version.
We call this "Zero copy versioning" in Lance. It makes versioning data easy without increasing storage costs.

2. Cloud storage is now the default

Remote object storage is the default now for data science and machine learning and the performance characteristics of cloud are fundamentally different.
Lance format is optimized to be cloud native. Common operations like filter-then-take can be order of magnitude faster using Lance than Parquet, especially for ML data.

3. Vectors must be a first class citizen, not a separate thing

The majority of reasonable scale workflows should not require the added complexity and cost of a specialized database just to compute vector similarity. Lance integrates optimized vector indices into a columnar format so no additional infrastructure is required to get low latency top-K similarity search.

4. Open standards is a requirement

The DS/ML ecosystem is incredibly rich and data must be easily accessible across different languages, tools, and environments. Lance makes Apache Arrow integration its primary interface, which means conversions to/from is 2 lines of code, your code does not need to change after conversion, and nothing is locked-up to force you to pay for vendor compute. We need open-source not fauxpen-source.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pylance-0.14.1-cp39-abi3-win_amd64.whl (23.7 MB view details)

Uploaded CPython 3.9+ Windows x86-64

pylance-0.14.1-cp39-abi3-manylinux_2_28_x86_64.whl (25.7 MB view details)

Uploaded CPython 3.9+ manylinux: glibc 2.28+ x86-64

pylance-0.14.1-cp39-abi3-manylinux_2_24_aarch64.whl (24.8 MB view details)

Uploaded CPython 3.9+ manylinux: glibc 2.24+ ARM64

pylance-0.14.1-cp39-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (25.7 MB view details)

Uploaded CPython 3.9+ manylinux: glibc 2.17+ x86-64

pylance-0.14.1-cp39-abi3-macosx_11_0_arm64.whl (20.4 MB view details)

Uploaded CPython 3.9+ macOS 11.0+ ARM64

pylance-0.14.1-cp39-abi3-macosx_10_15_x86_64.whl (22.2 MB view details)

Uploaded CPython 3.9+ macOS 10.15+ x86-64

File details

Details for the file pylance-0.14.1-cp39-abi3-win_amd64.whl.

File metadata

  • Download URL: pylance-0.14.1-cp39-abi3-win_amd64.whl
  • Upload date:
  • Size: 23.7 MB
  • Tags: CPython 3.9+, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.13

File hashes

Hashes for pylance-0.14.1-cp39-abi3-win_amd64.whl
Algorithm Hash digest
SHA256 a64ab20b0ec8e602bc7ef8e73b2dd14e4969900f237c1ea804c41b2216e2db1a
MD5 54601b03c917da3828880aa29fb7b7d2
BLAKE2b-256 15832c8f2c328c9236377c92ecb6346c3c8c0195648bfbafa966fa54f473ac84

See more details on using hashes here.

Provenance

File details

Details for the file pylance-0.14.1-cp39-abi3-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for pylance-0.14.1-cp39-abi3-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 e9307e27249262e3a95e6ec52021c9179025b24fc9d146af6a5810f1d35de8ec
MD5 1ad42f30f3fc988958dd94281522710b
BLAKE2b-256 2f954d3712793444cd638d809789be02bb0b88b5b2c1a436998385d965e62415

See more details on using hashes here.

Provenance

File details

Details for the file pylance-0.14.1-cp39-abi3-manylinux_2_24_aarch64.whl.

File metadata

File hashes

Hashes for pylance-0.14.1-cp39-abi3-manylinux_2_24_aarch64.whl
Algorithm Hash digest
SHA256 da64d1f8bbc1ea581c2fb7e44b9712608422e78e6bd620eaf0ffa0929ce7a131
MD5 50fbc58dec9fea34351deccd2473eb17
BLAKE2b-256 0b33ed3ab86d87493f6a6aa27b9a4ff7858e0194a4974e53f1c0fd11066c3cca

See more details on using hashes here.

Provenance

File details

Details for the file pylance-0.14.1-cp39-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pylance-0.14.1-cp39-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c2362925d117ea5a8759ace481818f31c782c1ad9915bfd93d868615a393c4f9
MD5 fc782b80411fbaa734e47b86d2bf5c80
BLAKE2b-256 49d4a571861ab36eff982d166df205a46882a534547658979c7ccab93911ce2f

See more details on using hashes here.

Provenance

File details

Details for the file pylance-0.14.1-cp39-abi3-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pylance-0.14.1-cp39-abi3-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 f5ed83cbe258dcd3c7595e87c88cbb69eb793b2ae8989afa3787719f33c99ecb
MD5 76dc5e1ddfb704dfe3da3c15621802c7
BLAKE2b-256 dd278022774048ffaf1167fd00ef002265387265aaf93058747036aa9a4647fb

See more details on using hashes here.

Provenance

File details

Details for the file pylance-0.14.1-cp39-abi3-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for pylance-0.14.1-cp39-abi3-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 893f4d95bda9f676cacca91e51e5bd2e9c3714a01145f42091b1820027a47401
MD5 87c5eaace6a6e584d2d8f6da824d34db
BLAKE2b-256 0711dcd667c5f1e0b14f2a2831ba9aae849d70a635970e7eb5363c9b49ab59ec

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page