Skip to main content

python wrapper for Lance columnar format

Project description

Python bindings for Lance Data Format

:warning: Under heavy development

Lance Logo

Lance is a new columnar data format for data science and machine learning

Why you should use Lance

  1. Is order of magnitude faster than parquet for point queries and nested data structures common to DS/ML
  2. Comes with a fast vector index that delivers sub-millisecond nearest neighbors search performance
  3. Is automatically versioned and supports lineage and time-travel for full reproducibility
  4. Integrated with duckdb/pandas/polars already. Easily convert from/to parquet in 2 lines of code

Quick start

Installation

pip install pylance

Make sure you have a recent version of pandas (1.5+), pyarrow (10.0+), and DuckDB (0.7.0+)

Converting to Lance

import lance

import pandas as pd
import pyarrow as pa
import pyarrow.dataset

df = pd.DataFrame({"a": [5], "b": [10]})
uri = "/tmp/test.parquet"
tbl = pa.Table.from_pandas(df)
pa.dataset.write_dataset(tbl, uri, format='parquet')

parquet = pa.dataset.dataset(uri, format='parquet')
lance.write_dataset(parquet, "/tmp/test.lance")

Reading Lance data

dataset = lance.dataset("/tmp/test.lance")
assert isinstance(dataset, pa.dataset.Dataset)

Pandas

df = dataset.to_table().to_pandas()

DuckDB

import duckdb

# If this segfaults, make sure you have duckdb v0.7+ installed
duckdb.query("SELECT * FROM dataset LIMIT 10").to_df()

Vector search

Download the sift1m subset

wget ftp://ftp.irisa.fr/local/texmex/corpus/sift.tar.gz
tar -xzf sift.tar.gz

Convert it to Lance

import lance
from lance.vector import vec_to_table
import numpy as np
import struct

nvecs = 1000000
ndims = 128
with open("sift/sift_base.fvecs", mode="rb") as fobj:
    buf = fobj.read()
    data = np.array(struct.unpack("<128000000f", buf[4 : 4 + 4 * nvecs * ndims])).reshape((nvecs, ndims))
    dd = dict(zip(range(nvecs), data))

table = vec_to_table(dd)
uri = "vec_data.lance"
sift1m = lance.write_dataset(table, uri, max_rows_per_group=8192, max_rows_per_file=1024*1024)

Build the index

sift1m.create_index("vector",
                    index_type="IVF_PQ", 
                    num_partitions=256,  # IVF
                    num_sub_vectors=16)  # PQ

Search the dataset

# Get top 10 similar vectors
import duckdb

dataset = lance.dataset(uri)

# Sample 100 query vectors. If this segfaults, make sure you have duckdb v0.7+ installed
sample = duckdb.query("SELECT vector FROM dataset USING SAMPLE 100").to_df()
query_vectors = np.array([np.array(x) for x in sample.vector])

# Get nearest neighbors for all of them
rs = [dataset.to_table(nearest={"column": "vector", "k": 10, "q": q})      
      for q in query_vectors]

*More distance metrics, HNSW, and distributed support is on the roadmap

Python package details

Install from PyPI: pip install pylance # >=0.3.0 is the new rust-based implementation Install from source: maturin develop (under the /python directory) Run unit tests: make test Run integration tests: make integtest

Import via: import lance

The python integration is done via pyo3 + custom python code:

  1. We make wrapper classes in Rust for Dataset/Scanner/RecordBatchReader that's exposed to python.
  2. These are then used by LanceDataset / LanceScanner implementations that extend pyarrow Dataset/Scanner for duckdb compat.
  3. Data is delivered via the Arrow C Data Interface

Motivation

Why do we need a new format for data science and machine learning?

1. Reproducibility is a must-have

Versioning and experimentation support should be built into the dataset instead of requiring multiple tools.
It should also be efficient and not require expensive copying everytime you want to create a new version.
We call this "Zero copy versioning" in Lance. It makes versioning data easy without increasing storage costs.

2. Cloud storage is now the default

Remote object storage is the default now for data science and machine learning and the performance characteristics of cloud are fundamentally different.
Lance format is optimized to be cloud native. Common operations like filter-then-take can be order of magnitude faster using Lance than Parquet, especially for ML data.

3. Vectors must be a first class citizen, not a separate thing

The majority of reasonable scale workflows should not require the added complexity and cost of a specialized database just to compute vector similarity. Lance integrates optimized vector indices into a columnar format so no additional infrastructure is required to get low latency top-K similarity search.

4. Open standards is a requirement

The DS/ML ecosystem is incredibly rich and data must be easily accessible across different languages, tools, and environments. Lance makes Apache Arrow integration its primary interface, which means conversions to/from is 2 lines of code, your code does not need to change after conversion, and nothing is locked-up to force you to pay for vendor compute. We need open-source not fauxpen-source.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pylance-0.15.0-cp39-abi3-win_amd64.whl (25.8 MB view details)

Uploaded CPython 3.9+ Windows x86-64

pylance-0.15.0-cp39-abi3-manylinux_2_28_x86_64.whl (28.0 MB view details)

Uploaded CPython 3.9+ manylinux: glibc 2.28+ x86-64

pylance-0.15.0-cp39-abi3-manylinux_2_24_aarch64.whl (27.1 MB view details)

Uploaded CPython 3.9+ manylinux: glibc 2.24+ ARM64

pylance-0.15.0-cp39-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (28.0 MB view details)

Uploaded CPython 3.9+ manylinux: glibc 2.17+ x86-64

pylance-0.15.0-cp39-abi3-macosx_11_0_arm64.whl (22.2 MB view details)

Uploaded CPython 3.9+ macOS 11.0+ ARM64

pylance-0.15.0-cp39-abi3-macosx_10_15_x86_64.whl (24.2 MB view details)

Uploaded CPython 3.9+ macOS 10.15+ x86-64

File details

Details for the file pylance-0.15.0-cp39-abi3-win_amd64.whl.

File metadata

  • Download URL: pylance-0.15.0-cp39-abi3-win_amd64.whl
  • Upload date:
  • Size: 25.8 MB
  • Tags: CPython 3.9+, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.13

File hashes

Hashes for pylance-0.15.0-cp39-abi3-win_amd64.whl
Algorithm Hash digest
SHA256 0260f4f93811c3888440412b6c7c071cc8fd22ac1a8b323472f919952926df2a
MD5 352a019ad9b36d8ee48e2d4b9b1ff787
BLAKE2b-256 3485d538fc55dd11c168032a7e5c10b29bc5f6e791e53e29d8c1620558e882f2

See more details on using hashes here.

Provenance

File details

Details for the file pylance-0.15.0-cp39-abi3-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for pylance-0.15.0-cp39-abi3-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 fbce3e07c33e3d30dd07593cfda4e185e1a08fa75fdc3ae4dcd2941ce7137714
MD5 4d6009bac23c8da84b6dd22581d54b5f
BLAKE2b-256 bb3dc65b206f99dc078770825c6d268c1eb7f3f7b18722268b132ec77d960a88

See more details on using hashes here.

Provenance

File details

Details for the file pylance-0.15.0-cp39-abi3-manylinux_2_24_aarch64.whl.

File metadata

File hashes

Hashes for pylance-0.15.0-cp39-abi3-manylinux_2_24_aarch64.whl
Algorithm Hash digest
SHA256 225df36e231f70b1c15df89c8c3ccc82f9dc7f443ebd24c2c808eac86ed99ed5
MD5 23405db7a60e5061716ac98c25e24e49
BLAKE2b-256 4f6ef96527a73c2eeb4d43f7bee12aeb383f191b6d2d4fff7497b36b0572463e

See more details on using hashes here.

Provenance

File details

Details for the file pylance-0.15.0-cp39-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pylance-0.15.0-cp39-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8821c2cffeb6c273833edf7e3777de8e9f93a014a50a347a87e11c5b743f82fe
MD5 7f5eeb0845d3d954b2de1e3733cd67bd
BLAKE2b-256 d4d3c532b0575b82abc8731293bada011a95004401bcdc470f6c93051218e852

See more details on using hashes here.

Provenance

File details

Details for the file pylance-0.15.0-cp39-abi3-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pylance-0.15.0-cp39-abi3-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 12f1ce4c47cf78b720d62667297e956a593430fe4a7559988c0436d27e58f2b6
MD5 ce68ec0dbbba08b89bc87413f96713e2
BLAKE2b-256 39374542a8b63ea9e146cdf601d83037b7983ce548e6e1c83b9d02e774845155

See more details on using hashes here.

Provenance

File details

Details for the file pylance-0.15.0-cp39-abi3-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for pylance-0.15.0-cp39-abi3-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 c61b1e3532fa481505cf04197fc3e38f1f2169d724c9eaa889f3acbae183db41
MD5 3e27395d7d39d49f6144c7800254d1d1
BLAKE2b-256 092eb44d27a5dc964ced645007f502c9ce1e4ec9e3403d39ecaab09a70d97b0d

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page