Skip to main content

Python extension for lance

Project description

Python bindings for Lance file format

Lance is a cloud-native columnar data format designed for managing large-scale computer vision datasets in production environments. Lance delivers blazing fast performance for image and video data use cases from analytics to point queries to training scans.

Why use Lance

You should use lance if you're a ML engineer looking to be 10x more productive when working with computer vision datasets:

  1. Lance saves you from having to manage multiple systems and formats for metadata, raw assets, labeling updates, and vector indices.
  2. Lance's custom column encoding means you don't need to choose between fast analytics and fast point queries.
  3. Lance has a first-class Apache Arrow integration so it's easy to create and query Lance datasets (e.g., you can directly query lance datasets using DuckDB with no extra work)
  4. Did we mention Lance is fast.

Try Lance

Install Lance from pip (use a venv, not conda):

pip install pylance duckdb

In python:

import lance
import duckdb

# Understand Label distribution of Oxford Pet Dataset
ds = lance.dataset("s3://eto-public/datasets/oxford_pet/pet.lance")
duckdb.query('select label, count(1) from ds group by label').to_arrow_table()

Caveat emptor

  • DON'T use Conda as it prefers it's on ld path and libstd etc
  • Currently only wheels are on pypi and no sdist. See below for instructions on building from source.
  • Python 3.8-3.10 is supported on Linux x86_64
  • Python 3.10 on MacOS (both x86_64 and Arm64) is supported

Developing Lance

Install python3, pip, and venv, and setup a virtual environment for Lance. Again, DO NOT USE CONDA (at least for now).

sudo apt install python3-pip python3-venv python3-dev
python3 -m venv ${HOME}/.venv/lance

Arrow C++ libs

Install Arrow C++ libs using instructions from Apache Arrow. These instructions don't include Arrow's python lib so after you go through the above, don't forget to apt install libarrow-python-dev or yum install libarrow-python-devel.

Build pyarrow

Assume CWD is where you want to put the repo:

source ${HOME}/.venv/lance/bin/activate
cd /path/to/lance/python/thirdparty
./build.sh

Make sure pyarrow works properly:

import pyarrow as pa
import pyarrow.parquet as pq
import pyarrow.dataset as ds

Build Lance

  1. Build the cpp lib. See lance/cpp/README.md for instructions.
  2. Build the python module in venv:
source ${HOME}/.venv/lance/bin/activate
python setup.py develop

Test the installation using the same queries in Try Lance section.

Project details


Release history Release notifications | RSS feed

This version

0.2.1

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pylance-0.2.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.4 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

pylance-0.2.1-cp310-cp310-macosx_11_0_arm64.whl (1.1 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pylance-0.2.1-cp310-cp310-macosx_10_15_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.10 macOS 10.15+ x86-64

pylance-0.2.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

pylance-0.2.1-cp39-cp39-macosx_11_0_arm64.whl (1.1 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pylance-0.2.1-cp39-cp39-macosx_10_15_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.9 macOS 10.15+ x86-64

pylance-0.2.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.4 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

pylance-0.2.1-cp38-cp38-macosx_11_0_arm64.whl (1.1 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pylance-0.2.1-cp38-cp38-macosx_10_15_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.8 macOS 10.15+ x86-64

File details

Details for the file pylance-0.2.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pylance-0.2.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1cf86acae3ec9e84511e8c891c2b2844e26ecd62e728bb4af01b62bdf847d201
MD5 4d7a4c0ec424025c6d0dbf3c7e8fe6d3
BLAKE2b-256 e96919447f59f88a1333deffbf3f5ee7c8e1acfdfb8afc5fea9261334bd50b00

See more details on using hashes here.

Provenance

File details

Details for the file pylance-0.2.1-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pylance-0.2.1-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 6508caacd6bc837863b4a9191ee7f48a363e49b288a7f28bd66b88be98f87f68
MD5 eadef4a06ed22a717b9db371eeaa06cc
BLAKE2b-256 6557dd3080dc60b7118e5c02215f9047a6c5b395b4bee794e703c1946ff28f6a

See more details on using hashes here.

Provenance

File details

Details for the file pylance-0.2.1-cp310-cp310-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for pylance-0.2.1-cp310-cp310-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 db54a14dd1fdbba88ab3d568bdfdb9dff3aa1d794d2653c60117a0847ea25a83
MD5 c30378bffa43aff5a9a26cc1fbbee14b
BLAKE2b-256 8bb4796053ec46eb824841cc310404834fcfebfcea7f9d2369eab228d2656f47

See more details on using hashes here.

Provenance

File details

Details for the file pylance-0.2.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pylance-0.2.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 44f3d2e58ca4ea896da9fd040990b04d508f39b3092cd9b4f294756617e00a95
MD5 d9169d2122f7f0ea9406b238bca4c5e4
BLAKE2b-256 269aa752ff704ca86b269003da15e2f572fbea21cedb90ba9354fa37803fed67

See more details on using hashes here.

Provenance

File details

Details for the file pylance-0.2.1-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pylance-0.2.1-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 b83fa5c3bc04508bc0dd53b14d9b3425de096ddf244a66d5f0a09dd308cc11cf
MD5 f465d456de024d08ec6fdfea8f72b17b
BLAKE2b-256 c3993c85f6982a6bb50bfd61171cbc511c7397840fddb3395ccae74676d8026b

See more details on using hashes here.

Provenance

File details

Details for the file pylance-0.2.1-cp39-cp39-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for pylance-0.2.1-cp39-cp39-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 84bab7c9a3017aeff4231c92a10ee82ab7e65d5b154c8544f2438d09dc11c9c4
MD5 ddbd3269305bfd3140a6c79cc3049b20
BLAKE2b-256 75624c719d05ff13f5acfec0c298440f71b64bdf4e81329ba0de4331ce16b9c6

See more details on using hashes here.

Provenance

File details

Details for the file pylance-0.2.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pylance-0.2.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 700b3f6fd6a9954671cab3eb4fc4f79110fd74d54d2f60f8f4f77bd5288fd7d2
MD5 37d9affb22f938dae714087bf2a3a44b
BLAKE2b-256 3f3d9b30cb46b38e290f3358e27d6af43a33949478d029ddb1b900b7087a9931

See more details on using hashes here.

Provenance

File details

Details for the file pylance-0.2.1-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pylance-0.2.1-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 1cc17b8f3214adb256acfd0d7504f2f83c84246ae1f7a93abdd5cf2ddfc03bd4
MD5 8e3f5ce4964e9c20f5361a5b2a9b9679
BLAKE2b-256 90f1a8627cddf2475f25e7bad2bd47d9974bea6047e010282d0dea68d46f83a1

See more details on using hashes here.

Provenance

File details

Details for the file pylance-0.2.1-cp38-cp38-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for pylance-0.2.1-cp38-cp38-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 26c36591d406c47539bd177ede3f85b6447e1b4a6a4846b6d29f042e7c3a4451
MD5 6fd06c1f94b8bbce6ce780d71f8a5a1a
BLAKE2b-256 6d265e9a7d20af89454fb0c4e5b65ec8c6c96093f65c4c2c2a7ae1452795516a

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page