Skip to main content

python wrapper for lance-rs

Project description

Python bindings for Lance Data Format

:warning: Under heavy development

Lance Logo

Lance is a new columnar data format for data science and machine learning

Why you should use Lance

  1. Is order of magnitude faster than parquet for point queries and nested data structures common to DS/ML
  2. Comes with a fast vector index that delivers sub-millisecond nearest neighbors search performance
  3. Is automatically versioned and supports lineage and time-travel for full reproducibility
  4. Integrated with duckdb/pandas/polars already. Easily convert from/to parquet in 2 lines of code

Quick start

Installation

pip install pylance

Make sure you have a recent version of pandas (1.5+), pyarrow (10.0+), and DuckDB (0.7.0+)

Converting to Lance

import lance

import pandas as pd
import pyarrow as pa
import pyarrow.dataset

df = pd.DataFrame({"a": [5], "b": [10]})
uri = "/tmp/test.parquet"
tbl = pa.Table.from_pandas(df)
pa.dataset.write_dataset(tbl, uri, format='parquet')

parquet = pa.dataset.dataset(uri, format='parquet')
lance.write_dataset(parquet, "/tmp/test.lance")

Reading Lance data

dataset = lance.dataset("/tmp/test.lance")
assert isinstance(dataset, pa.dataset.Dataset)

Pandas

df = dataset.to_table().to_pandas()

DuckDB

import duckdb

# If this segfaults, make sure you have duckdb v0.7+ installed
duckdb.query("SELECT * FROM dataset LIMIT 10").to_df()

Vector search

Download the sift1m subset

wget ftp://ftp.irisa.fr/local/texmex/corpus/sift.tar.gz
tar -xzf sift.tar.gz

Convert it to Lance

import lance
from lance.vector import vec_to_table
import numpy as np
import struct

nvecs = 1000000
ndims = 128
with open("sift/sift_base.fvecs", mode="rb") as fobj:
    buf = fobj.read()
    data = np.array(struct.unpack("<128000000f", buf[4 : 4 + 4 * nvecs * ndims])).reshape((nvecs, ndims))
    dd = dict(zip(range(nvecs), data))

table = vec_to_table(dd)
uri = "vec_data.lance"
sift1m = lance.write_dataset(table, uri, max_rows_per_group=8192, max_rows_per_file=1024*1024)

Build the index

sift1m.create_index("vector",
                    index_type="IVF_PQ", 
                    num_partitions=256,  # IVF
                    num_sub_vectors=16)  # PQ

Search the dataset

# Get top 10 similar vectors
import duckdb

dataset = lance.dataset(uri)

# Sample 100 query vectors. If this segfaults, make sure you have duckdb v0.7+ installed
sample = duckdb.query("SELECT vector FROM dataset USING SAMPLE 100").to_df()
query_vectors = np.array([np.array(x) for x in sample.vector])

# Get nearest neighbors for all of them
rs = [dataset.to_table(nearest={"column": "vector", "k": 10, "q": q})      
      for q in query_vectors]

*More distance metrics, HNSW, and distributed support is on the roadmap

Python package details

Install from PyPI: pip install pylance # >=0.3.0 is the new rust-based implementation Install from source: maturin develop (under the /python directory)

Import via: import lance

The python integration is done via pyo3 + custom python code:

  1. We make wrapper classes in Rust for Dataset/Scanner/RecordBatchReader that's exposed to python.
  2. These are then used by LanceDataset / LanceScanner implementations that extend pyarrow Dataset/Scanner for duckdb compat.
  3. Data is delivered via the Arrow C Data Interface

Motivation

Why do we need a new format for data science and machine learning?

1. Reproducibility is a must-have

Versioning and experimentation support should be built into the dataset instead of requiring multiple tools.
It should also be efficient and not require expensive copying everytime you want to create a new version.
We call this "Zero copy versioning" in Lance. It makes versioning data easy without increasing storage costs.

2. Cloud storage is now the default

Remote object storage is the default now for data science and machine learning and the performance characteristics of cloud are fundamentally different.
Lance format is optimized to be cloud native. Common operations like filter-then-take can be order of magnitude faster using Lance than Parquet, especially for ML data.

3. Vectors must be a first class citizen, not a separate thing

The majority of reasonable scale workflows should not require the added complexity and cost of a specialized database just to compute vector similarity. Lance integrates optimized vector indices into a columnar format so no additional infrastructure is required to get low latency top-K similarity search.

4. Open standards is a requirement

The DS/ML ecosystem is incredibly rich and data must be easily accessible across different languages, tools, and environments. Lance makes Apache Arrow integration its primary interface, which means conversions to/from is 2 lines of code, your code does not need to change after conversion, and nothing is locked-up to force you to pay for vendor compute. We need open-source not fauxpen-source.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pylance-0.6.1-cp38-abi3-win_amd64.whl (18.5 MB view details)

Uploaded CPython 3.8+ Windows x86-64

pylance-0.6.1-cp38-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (26.9 MB view details)

Uploaded CPython 3.8+ manylinux: glibc 2.17+ x86-64

pylance-0.6.1-cp38-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (25.7 MB view details)

Uploaded CPython 3.8+ manylinux: glibc 2.17+ ARM64

pylance-0.6.1-cp38-abi3-macosx_11_0_arm64.whl (16.7 MB view details)

Uploaded CPython 3.8+ macOS 11.0+ ARM64

pylance-0.6.1-cp38-abi3-macosx_10_15_x86_64.whl (17.6 MB view details)

Uploaded CPython 3.8+ macOS 10.15+ x86-64

File details

Details for the file pylance-0.6.1-cp38-abi3-win_amd64.whl.

File metadata

  • Download URL: pylance-0.6.1-cp38-abi3-win_amd64.whl
  • Upload date:
  • Size: 18.5 MB
  • Tags: CPython 3.8+, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.10

File hashes

Hashes for pylance-0.6.1-cp38-abi3-win_amd64.whl
Algorithm Hash digest
SHA256 54f1927de995704dd6e5d74b43ac301b1845676f256a86fa85f56293380f9256
MD5 a56c7d3b6d17025c6a66d615247d89c2
BLAKE2b-256 7ad14a36938404a91ce4da5207f07438bee809342388934f500d3b0445dc5713

See more details on using hashes here.

Provenance

File details

Details for the file pylance-0.6.1-cp38-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pylance-0.6.1-cp38-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 125b6c130f26024bb0a46d1fda246e78165c00f1cf3c5a866e805f8f8b7d24a2
MD5 2607d8b28e0f6f0ae6cac1f9583c139b
BLAKE2b-256 1fb51dd4333390eb373acc486f804e9e485affcc625a424592187b6120b79881

See more details on using hashes here.

Provenance

File details

Details for the file pylance-0.6.1-cp38-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pylance-0.6.1-cp38-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 7a49c1c8e7eeb16b67328cd0692091ba2716a1994dfd8f0f5b977b24d13879bd
MD5 bde9c620d2d2b9b1f7f1ea70ae22fb29
BLAKE2b-256 a28f0ee14d61d6376be8765b2d4790347e8cb2e9c24e745a9312f0163b418fc0

See more details on using hashes here.

Provenance

File details

Details for the file pylance-0.6.1-cp38-abi3-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pylance-0.6.1-cp38-abi3-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 aa1a997591399cc508dd9ceaad021b5bed205cad308b9ea8c30b20d7df3c39fb
MD5 c3ea107811677d2b66a19c3427f27b48
BLAKE2b-256 03df072d1dbd42fe208fd32237df79b8d6561b7f75d1d172a8608d9c76df350f

See more details on using hashes here.

Provenance

File details

Details for the file pylance-0.6.1-cp38-abi3-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for pylance-0.6.1-cp38-abi3-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 8481f8dca3ad30fc38b3ca69690635d410174396bb919849df54f494d74ba694
MD5 0b07caf459cfd20369c4fe20ba52205c
BLAKE2b-256 1f1662f54712e33f1b09adfca956d4524b019a0cdc2fd1c03644e0fa9fa79187

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page