Skip to main content

python wrapper for lance-rs

Project description

Python bindings for Lance Data Format

:warning: Under heavy development

Lance Logo

Lance is a new columnar data format for data science and machine learning

Why you should use Lance

  1. Is order of magnitude faster than parquet for point queries and nested data structures common to DS/ML
  2. Comes with a fast vector index that delivers sub-millisecond nearest neighbors search performance
  3. Is automatically versioned and supports lineage and time-travel for full reproducibility
  4. Integrated with duckdb/pandas/polars already. Easily convert from/to parquet in 2 lines of code

Quick start

Installation

pip install pylance

Make sure you have a recent version of pandas (1.5+), pyarrow (10.0+), and DuckDB (0.7.0+)

Converting to Lance

import lance

import pandas as pd
import pyarrow as pa
import pyarrow.dataset

df = pd.DataFrame({"a": [5], "b": [10]})
uri = "/tmp/test.parquet"
tbl = pa.Table.from_pandas(df)
pa.dataset.write_dataset(tbl, uri, format='parquet')

parquet = pa.dataset.dataset(uri, format='parquet')
lance.write_dataset(parquet, "/tmp/test.lance")

Reading Lance data

dataset = lance.dataset("/tmp/test.lance")
assert isinstance(dataset, pa.dataset.Dataset)

Pandas

df = dataset.to_table().to_pandas()

DuckDB

import duckdb

# If this segfaults, make sure you have duckdb v0.7+ installed
duckdb.query("SELECT * FROM dataset LIMIT 10").to_df()

Vector search

Download the sift1m subset

wget ftp://ftp.irisa.fr/local/texmex/corpus/sift.tar.gz
tar -xzf sift.tar.gz

Convert it to Lance

import lance
from lance.vector import vec_to_table
import numpy as np
import struct

nvecs = 1000000
ndims = 128
with open("sift/sift_base.fvecs", mode="rb") as fobj:
    buf = fobj.read()
    data = np.array(struct.unpack("<128000000f", buf[4 : 4 + 4 * nvecs * ndims])).reshape((nvecs, ndims))
    dd = dict(zip(range(nvecs), data))

table = vec_to_table(dd)
uri = "vec_data.lance"
sift1m = lance.write_dataset(table, uri, max_rows_per_group=8192, max_rows_per_file=1024*1024)

Build the index

sift1m.create_index("vector",
                    index_type="IVF_PQ", 
                    num_partitions=256,  # IVF
                    num_sub_vectors=16)  # PQ

Search the dataset

# Get top 10 similar vectors
import duckdb

dataset = lance.dataset(uri)

# Sample 100 query vectors. If this segfaults, make sure you have duckdb v0.7+ installed
sample = duckdb.query("SELECT vector FROM dataset USING SAMPLE 100").to_df()
query_vectors = np.array([np.array(x) for x in sample.vector])

# Get nearest neighbors for all of them
rs = [dataset.to_table(nearest={"column": "vector", "k": 10, "q": q})      
      for q in query_vectors]

*More distance metrics, HNSW, and distributed support is on the roadmap

Python package details

Install from PyPI: pip install pylance # >=0.3.0 is the new rust-based implementation Install from source: maturin develop (under the /python directory)

Import via: import lance

The python integration is done via pyo3 + custom python code:

  1. We make wrapper classes in Rust for Dataset/Scanner/RecordBatchReader that's exposed to python.
  2. These are then used by LanceDataset / LanceScanner implementations that extend pyarrow Dataset/Scanner for duckdb compat.
  3. Data is delivered via the Arrow C Data Interface

Motivation

Why do we need a new format for data science and machine learning?

1. Reproducibility is a must-have

Versioning and experimentation support should be built into the dataset instead of requiring multiple tools.
It should also be efficient and not require expensive copying everytime you want to create a new version.
We call this "Zero copy versioning" in Lance. It makes versioning data easy without increasing storage costs.

2. Cloud storage is now the default

Remote object storage is the default now for data science and machine learning and the performance characteristics of cloud are fundamentally different.
Lance format is optimized to be cloud native. Common operations like filter-then-take can be order of magnitude faster using Lance than Parquet, especially for ML data.

3. Vectors must be a first class citizen, not a separate thing

The majority of reasonable scale workflows should not require the added complexity and cost of a specialized database just to compute vector similarity. Lance integrates optimized vector indices into a columnar format so no additional infrastructure is required to get low latency top-K similarity search.

4. Open standards is a requirement

The DS/ML ecosystem is incredibly rich and data must be easily accessible across different languages, tools, and environments. Lance makes Apache Arrow integration its primary interface, which means conversions to/from is 2 lines of code, your code does not need to change after conversion, and nothing is locked-up to force you to pay for vendor compute. We need open-source not fauxpen-source.

Project details


Release history Release notifications | RSS feed

This version

0.7.2

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pylance-0.7.2-cp38-abi3-win_amd64.whl (19.8 MB view details)

Uploaded CPython 3.8+ Windows x86-64

pylance-0.7.2-cp38-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (27.0 MB view details)

Uploaded CPython 3.8+ manylinux: glibc 2.17+ x86-64

pylance-0.7.2-cp38-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (26.2 MB view details)

Uploaded CPython 3.8+ manylinux: glibc 2.17+ ARM64

pylance-0.7.2-cp38-abi3-macosx_11_0_arm64.whl (18.2 MB view details)

Uploaded CPython 3.8+ macOS 11.0+ ARM64

pylance-0.7.2-cp38-abi3-macosx_10_15_x86_64.whl (19.3 MB view details)

Uploaded CPython 3.8+ macOS 10.15+ x86-64

File details

Details for the file pylance-0.7.2-cp38-abi3-win_amd64.whl.

File metadata

  • Download URL: pylance-0.7.2-cp38-abi3-win_amd64.whl
  • Upload date:
  • Size: 19.8 MB
  • Tags: CPython 3.8+, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.10

File hashes

Hashes for pylance-0.7.2-cp38-abi3-win_amd64.whl
Algorithm Hash digest
SHA256 3777703cf840ef927b978221ec8b0c737c291cef4ca5f1bc237d25291d73f8a8
MD5 5114aec5e008d4e4f85c7798f6b7960c
BLAKE2b-256 fdbcf148366d7ce2d74c7d26fd91d9aa04a887eebc6bb05c41e281a6eca031b6

See more details on using hashes here.

Provenance

File details

Details for the file pylance-0.7.2-cp38-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pylance-0.7.2-cp38-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 76ed66a1d24346c3ae83f891b6d199671765910cddcd60c633fc28f1adba4c7b
MD5 dcffed5361b48d78eda222fb30df5f49
BLAKE2b-256 bce8710387e696627cf70666362ff7b5a2ff39dd72ded36415550a4047631abb

See more details on using hashes here.

Provenance

File details

Details for the file pylance-0.7.2-cp38-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pylance-0.7.2-cp38-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 7dd9931f153334ec85eda8d4b1ec680fbece8dbcc7fd57e1ae9da63cb91fc225
MD5 28417b0932927e2ee2f28861f16abc54
BLAKE2b-256 7fccdbb7819301c3b9ec222fcdcee98a51cac2eb08bc7f5069994469b02edf1f

See more details on using hashes here.

Provenance

File details

Details for the file pylance-0.7.2-cp38-abi3-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pylance-0.7.2-cp38-abi3-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 3e8b147f3329e5d517cf7a38c6c43ea8d9f489137c15eb60fb0efe80d5fde5f3
MD5 2738da9f6f09ad374c1e86dd3e838c0f
BLAKE2b-256 13b7d80ad5f438b51e981879d1ebc3938dfbf9fa1d95cc0f2d68a7e20839d5bc

See more details on using hashes here.

Provenance

File details

Details for the file pylance-0.7.2-cp38-abi3-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for pylance-0.7.2-cp38-abi3-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 e977517495ab17fd872919fbde90df67b49104624e6fc9932aef5b0c3c470cdd
MD5 a58220640afb61804a71e61e5ab5686e
BLAKE2b-256 506799790b6953af863f9b61b60ed8b991e3b866437a3af30ca8ac108162b4b7

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page