Skip to main content

python wrapper for Lance columnar format

Project description

Python bindings for Lance Data Format

:warning: Under heavy development

Lance Logo

Lance is a new columnar data format for data science and machine learning

Why you should use Lance

  1. Is order of magnitude faster than parquet for point queries and nested data structures common to DS/ML
  2. Comes with a fast vector index that delivers sub-millisecond nearest neighbors search performance
  3. Is automatically versioned and supports lineage and time-travel for full reproducibility
  4. Integrated with duckdb/pandas/polars already. Easily convert from/to parquet in 2 lines of code

Quick start

Installation

pip install pylance

Make sure you have a recent version of pandas (1.5+), pyarrow (10.0+), and DuckDB (0.7.0+)

Converting to Lance

import lance

import pandas as pd
import pyarrow as pa
import pyarrow.dataset

df = pd.DataFrame({"a": [5], "b": [10]})
uri = "/tmp/test.parquet"
tbl = pa.Table.from_pandas(df)
pa.dataset.write_dataset(tbl, uri, format='parquet')

parquet = pa.dataset.dataset(uri, format='parquet')
lance.write_dataset(parquet, "/tmp/test.lance")

Reading Lance data

dataset = lance.dataset("/tmp/test.lance")
assert isinstance(dataset, pa.dataset.Dataset)

Pandas

df = dataset.to_table().to_pandas()

DuckDB

import duckdb

# If this segfaults, make sure you have duckdb v0.7+ installed
duckdb.query("SELECT * FROM dataset LIMIT 10").to_df()

Vector search

Download the sift1m subset

wget ftp://ftp.irisa.fr/local/texmex/corpus/sift.tar.gz
tar -xzf sift.tar.gz

Convert it to Lance

import lance
from lance.vector import vec_to_table
import numpy as np
import struct

nvecs = 1000000
ndims = 128
with open("sift/sift_base.fvecs", mode="rb") as fobj:
    buf = fobj.read()
    data = np.array(struct.unpack("<128000000f", buf[4 : 4 + 4 * nvecs * ndims])).reshape((nvecs, ndims))
    dd = dict(zip(range(nvecs), data))

table = vec_to_table(dd)
uri = "vec_data.lance"
sift1m = lance.write_dataset(table, uri, max_rows_per_group=8192, max_rows_per_file=1024*1024)

Build the index

sift1m.create_index("vector",
                    index_type="IVF_PQ", 
                    num_partitions=256,  # IVF
                    num_sub_vectors=16)  # PQ

Search the dataset

# Get top 10 similar vectors
import duckdb

dataset = lance.dataset(uri)

# Sample 100 query vectors. If this segfaults, make sure you have duckdb v0.7+ installed
sample = duckdb.query("SELECT vector FROM dataset USING SAMPLE 100").to_df()
query_vectors = np.array([np.array(x) for x in sample.vector])

# Get nearest neighbors for all of them
rs = [dataset.to_table(nearest={"column": "vector", "k": 10, "q": q})      
      for q in query_vectors]

*More distance metrics, HNSW, and distributed support is on the roadmap

Python package details

Install from PyPI: pip install pylance # >=0.3.0 is the new rust-based implementation Install from source: maturin develop (under the /python directory) Run unit tests: make test Run integration tests: make integtest

Import via: import lance

The python integration is done via pyo3 + custom python code:

  1. We make wrapper classes in Rust for Dataset/Scanner/RecordBatchReader that's exposed to python.
  2. These are then used by LanceDataset / LanceScanner implementations that extend pyarrow Dataset/Scanner for duckdb compat.
  3. Data is delivered via the Arrow C Data Interface

Motivation

Why do we need a new format for data science and machine learning?

1. Reproducibility is a must-have

Versioning and experimentation support should be built into the dataset instead of requiring multiple tools.
It should also be efficient and not require expensive copying everytime you want to create a new version.
We call this "Zero copy versioning" in Lance. It makes versioning data easy without increasing storage costs.

2. Cloud storage is now the default

Remote object storage is the default now for data science and machine learning and the performance characteristics of cloud are fundamentally different.
Lance format is optimized to be cloud native. Common operations like filter-then-take can be order of magnitude faster using Lance than Parquet, especially for ML data.

3. Vectors must be a first class citizen, not a separate thing

The majority of reasonable scale workflows should not require the added complexity and cost of a specialized database just to compute vector similarity. Lance integrates optimized vector indices into a columnar format so no additional infrastructure is required to get low latency top-K similarity search.

4. Open standards is a requirement

The DS/ML ecosystem is incredibly rich and data must be easily accessible across different languages, tools, and environments. Lance makes Apache Arrow integration its primary interface, which means conversions to/from is 2 lines of code, your code does not need to change after conversion, and nothing is locked-up to force you to pay for vendor compute. We need open-source not fauxpen-source.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pylance-0.8.11-cp38-abi3-win_amd64.whl (19.0 MB view details)

Uploaded CPython 3.8+ Windows x86-64

pylance-0.8.11-cp38-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (18.3 MB view details)

Uploaded CPython 3.8+ manylinux: glibc 2.17+ x86-64

pylance-0.8.11-cp38-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (16.8 MB view details)

Uploaded CPython 3.8+ manylinux: glibc 2.17+ ARM64

pylance-0.8.11-cp38-abi3-macosx_11_0_arm64.whl (15.9 MB view details)

Uploaded CPython 3.8+ macOS 11.0+ ARM64

pylance-0.8.11-cp38-abi3-macosx_10_15_x86_64.whl (17.4 MB view details)

Uploaded CPython 3.8+ macOS 10.15+ x86-64

File details

Details for the file pylance-0.8.11-cp38-abi3-win_amd64.whl.

File metadata

  • Download URL: pylance-0.8.11-cp38-abi3-win_amd64.whl
  • Upload date:
  • Size: 19.0 MB
  • Tags: CPython 3.8+, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.10

File hashes

Hashes for pylance-0.8.11-cp38-abi3-win_amd64.whl
Algorithm Hash digest
SHA256 480355817e66f32d5e6f681e1063cf7ad16304d0a438d3a45118d0d308dd07ea
MD5 c3f15170f2e2463ae995f2652a28abb5
BLAKE2b-256 78ca4fbd4bbc9858b9767bd9edcf7ff9870e2bb95f1530eabfad986bf9f5c56d

See more details on using hashes here.

Provenance

File details

Details for the file pylance-0.8.11-cp38-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pylance-0.8.11-cp38-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0e44a537967ca57d4522ff9564d6cc453f81e8fa41375b3e7578033c850edf0b
MD5 cfa0a6056e6c1df42083d37483e7cd8a
BLAKE2b-256 58f3ff1a099237400200829b65657f34fa362421546d6aa39f515e1ccea487d0

See more details on using hashes here.

Provenance

File details

Details for the file pylance-0.8.11-cp38-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pylance-0.8.11-cp38-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 e323d8d5bcc5a81bfcf1d139f54bdba1482c8d53027f12ac5c41814d5e7628ca
MD5 961b9eed5862234f73e443fc5f556884
BLAKE2b-256 33c5767f204ae3be8b312d4448689119448421c1fb2936622bf14a9c3c0bfc34

See more details on using hashes here.

Provenance

File details

Details for the file pylance-0.8.11-cp38-abi3-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pylance-0.8.11-cp38-abi3-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 e1cc5603cfae3cf6c6a389210064cf5a25e453ca0ca044d416ad1664aed26a24
MD5 bbd9f796e353d728289e17bdffd8d17c
BLAKE2b-256 b483ec481940aa76581e8ae15a995258cf8e5345b29564f6bdf6517b7ae3b54b

See more details on using hashes here.

Provenance

File details

Details for the file pylance-0.8.11-cp38-abi3-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for pylance-0.8.11-cp38-abi3-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 809d8da73bd70318dd6d10bd1dbcca71406fb788fecb0318af113793f8ab782b
MD5 6bfa8a802f6c49232c668096f5a51e82
BLAKE2b-256 b97eb38a6fbe5ef2609915cc94ff2f5144db1e4e53a3723a167ed6f0923ea2d7

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page