Skip to main content

python wrapper for Lance columnar format

Project description

Python bindings for Lance Data Format

:warning: Under heavy development

Lance Logo

Lance is a new columnar data format for data science and machine learning

Why you should use Lance

  1. Is order of magnitude faster than parquet for point queries and nested data structures common to DS/ML
  2. Comes with a fast vector index that delivers sub-millisecond nearest neighbors search performance
  3. Is automatically versioned and supports lineage and time-travel for full reproducibility
  4. Integrated with duckdb/pandas/polars already. Easily convert from/to parquet in 2 lines of code

Quick start

Installation

pip install pylance

Make sure you have a recent version of pandas (1.5+), pyarrow (10.0+), and DuckDB (0.7.0+)

Converting to Lance

import lance

import pandas as pd
import pyarrow as pa
import pyarrow.dataset

df = pd.DataFrame({"a": [5], "b": [10]})
uri = "/tmp/test.parquet"
tbl = pa.Table.from_pandas(df)
pa.dataset.write_dataset(tbl, uri, format='parquet')

parquet = pa.dataset.dataset(uri, format='parquet')
lance.write_dataset(parquet, "/tmp/test.lance")

Reading Lance data

dataset = lance.dataset("/tmp/test.lance")
assert isinstance(dataset, pa.dataset.Dataset)

Pandas

df = dataset.to_table().to_pandas()

DuckDB

import duckdb

# If this segfaults, make sure you have duckdb v0.7+ installed
duckdb.query("SELECT * FROM dataset LIMIT 10").to_df()

Vector search

Download the sift1m subset

wget ftp://ftp.irisa.fr/local/texmex/corpus/sift.tar.gz
tar -xzf sift.tar.gz

Convert it to Lance

import lance
from lance.vector import vec_to_table
import numpy as np
import struct

nvecs = 1000000
ndims = 128
with open("sift/sift_base.fvecs", mode="rb") as fobj:
    buf = fobj.read()
    data = np.array(struct.unpack("<128000000f", buf[4 : 4 + 4 * nvecs * ndims])).reshape((nvecs, ndims))
    dd = dict(zip(range(nvecs), data))

table = vec_to_table(dd)
uri = "vec_data.lance"
sift1m = lance.write_dataset(table, uri, max_rows_per_group=8192, max_rows_per_file=1024*1024)

Build the index

sift1m.create_index("vector",
                    index_type="IVF_PQ", 
                    num_partitions=256,  # IVF
                    num_sub_vectors=16)  # PQ

Search the dataset

# Get top 10 similar vectors
import duckdb

dataset = lance.dataset(uri)

# Sample 100 query vectors. If this segfaults, make sure you have duckdb v0.7+ installed
sample = duckdb.query("SELECT vector FROM dataset USING SAMPLE 100").to_df()
query_vectors = np.array([np.array(x) for x in sample.vector])

# Get nearest neighbors for all of them
rs = [dataset.to_table(nearest={"column": "vector", "k": 10, "q": q})      
      for q in query_vectors]

*More distance metrics, HNSW, and distributed support is on the roadmap

Python package details

Install from PyPI: pip install pylance # >=0.3.0 is the new rust-based implementation Install from source: maturin develop (under the /python directory) Run unit tests: make test Run integration tests: make integtest

Import via: import lance

The python integration is done via pyo3 + custom python code:

  1. We make wrapper classes in Rust for Dataset/Scanner/RecordBatchReader that's exposed to python.
  2. These are then used by LanceDataset / LanceScanner implementations that extend pyarrow Dataset/Scanner for duckdb compat.
  3. Data is delivered via the Arrow C Data Interface

Motivation

Why do we need a new format for data science and machine learning?

1. Reproducibility is a must-have

Versioning and experimentation support should be built into the dataset instead of requiring multiple tools.
It should also be efficient and not require expensive copying everytime you want to create a new version.
We call this "Zero copy versioning" in Lance. It makes versioning data easy without increasing storage costs.

2. Cloud storage is now the default

Remote object storage is the default now for data science and machine learning and the performance characteristics of cloud are fundamentally different.
Lance format is optimized to be cloud native. Common operations like filter-then-take can be order of magnitude faster using Lance than Parquet, especially for ML data.

3. Vectors must be a first class citizen, not a separate thing

The majority of reasonable scale workflows should not require the added complexity and cost of a specialized database just to compute vector similarity. Lance integrates optimized vector indices into a columnar format so no additional infrastructure is required to get low latency top-K similarity search.

4. Open standards is a requirement

The DS/ML ecosystem is incredibly rich and data must be easily accessible across different languages, tools, and environments. Lance makes Apache Arrow integration its primary interface, which means conversions to/from is 2 lines of code, your code does not need to change after conversion, and nothing is locked-up to force you to pay for vendor compute. We need open-source not fauxpen-source.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pylance-0.8.14-cp38-abi3-win_amd64.whl (19.0 MB view details)

Uploaded CPython 3.8+ Windows x86-64

pylance-0.8.14-cp38-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (18.4 MB view details)

Uploaded CPython 3.8+ manylinux: glibc 2.17+ x86-64

pylance-0.8.14-cp38-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (16.8 MB view details)

Uploaded CPython 3.8+ manylinux: glibc 2.17+ ARM64

pylance-0.8.14-cp38-abi3-macosx_11_0_arm64.whl (16.0 MB view details)

Uploaded CPython 3.8+ macOS 11.0+ ARM64

pylance-0.8.14-cp38-abi3-macosx_10_15_x86_64.whl (17.4 MB view details)

Uploaded CPython 3.8+ macOS 10.15+ x86-64

File details

Details for the file pylance-0.8.14-cp38-abi3-win_amd64.whl.

File metadata

  • Download URL: pylance-0.8.14-cp38-abi3-win_amd64.whl
  • Upload date:
  • Size: 19.0 MB
  • Tags: CPython 3.8+, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.10

File hashes

Hashes for pylance-0.8.14-cp38-abi3-win_amd64.whl
Algorithm Hash digest
SHA256 1b3a0f58f197e23436dad7f4836935a647c42b429f4498ba78d4b0a073bd511f
MD5 c5804cd84edb5f5ddf20b6ae3383b947
BLAKE2b-256 c3c663579e9d2dd0eba0db31c7ae7deaa5b0e63c8ef2ff90b96c9d03e9bc91a2

See more details on using hashes here.

Provenance

File details

Details for the file pylance-0.8.14-cp38-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pylance-0.8.14-cp38-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 fa58b8961d3d95717832f83008b28154ebac96e60da50f3280f2cf4adbcefaeb
MD5 664778c2e6b3c169fa4fefceaf75f55f
BLAKE2b-256 c8f73ae785506ecc98bff100cb33d854e499ffc5608c9cee18ce9e89ac95feb2

See more details on using hashes here.

Provenance

File details

Details for the file pylance-0.8.14-cp38-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pylance-0.8.14-cp38-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 7c0e1daf8ec1e43557e6ac9da7b3e6571f168bc7c09e088ba10224ff1fcf402a
MD5 87f8e30fa1b8a8be6a6d2dbd4f59401f
BLAKE2b-256 edf7449a864cccd6cacaacd60f86a9451681065902606e8db31af5d7869f29cd

See more details on using hashes here.

Provenance

File details

Details for the file pylance-0.8.14-cp38-abi3-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pylance-0.8.14-cp38-abi3-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 0934881fd0316653879f8d4d25a7df697b4538733baea0b0e0389d18fce36743
MD5 822beef6fd320b8a951f6a24e1816706
BLAKE2b-256 18480f3808ea348143431e9296e50eca2aff802f9959f9f66bf899e965f3fd4a

See more details on using hashes here.

Provenance

File details

Details for the file pylance-0.8.14-cp38-abi3-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for pylance-0.8.14-cp38-abi3-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 44963d498fe271706425f00ba671ae73eed5ebce2175d1b93cc6aa866c95220d
MD5 99f34e8ca5b7035f133ee03ca09c35ba
BLAKE2b-256 8b6d3030eda6f6c85b129ffe1f11c30905532f79c68d4c80d016c28afd31ce38

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page