Skip to main content

python wrapper for Lance columnar format

Project description

Python bindings for Lance Data Format

:warning: Under heavy development

Lance Logo

Lance is a new columnar data format for data science and machine learning

Why you should use Lance

  1. Is order of magnitude faster than parquet for point queries and nested data structures common to DS/ML
  2. Comes with a fast vector index that delivers sub-millisecond nearest neighbors search performance
  3. Is automatically versioned and supports lineage and time-travel for full reproducibility
  4. Integrated with duckdb/pandas/polars already. Easily convert from/to parquet in 2 lines of code

Quick start

Installation

pip install pylance

Make sure you have a recent version of pandas (1.5+), pyarrow (10.0+), and DuckDB (0.7.0+)

Converting to Lance

import lance

import pandas as pd
import pyarrow as pa
import pyarrow.dataset

df = pd.DataFrame({"a": [5], "b": [10]})
uri = "/tmp/test.parquet"
tbl = pa.Table.from_pandas(df)
pa.dataset.write_dataset(tbl, uri, format='parquet')

parquet = pa.dataset.dataset(uri, format='parquet')
lance.write_dataset(parquet, "/tmp/test.lance")

Reading Lance data

dataset = lance.dataset("/tmp/test.lance")
assert isinstance(dataset, pa.dataset.Dataset)

Pandas

df = dataset.to_table().to_pandas()

DuckDB

import duckdb

# If this segfaults, make sure you have duckdb v0.7+ installed
duckdb.query("SELECT * FROM dataset LIMIT 10").to_df()

Vector search

Download the sift1m subset

wget ftp://ftp.irisa.fr/local/texmex/corpus/sift.tar.gz
tar -xzf sift.tar.gz

Convert it to Lance

import lance
from lance.vector import vec_to_table
import numpy as np
import struct

nvecs = 1000000
ndims = 128
with open("sift/sift_base.fvecs", mode="rb") as fobj:
    buf = fobj.read()
    data = np.array(struct.unpack("<128000000f", buf[4 : 4 + 4 * nvecs * ndims])).reshape((nvecs, ndims))
    dd = dict(zip(range(nvecs), data))

table = vec_to_table(dd)
uri = "vec_data.lance"
sift1m = lance.write_dataset(table, uri, max_rows_per_group=8192, max_rows_per_file=1024*1024)

Build the index

sift1m.create_index("vector",
                    index_type="IVF_PQ", 
                    num_partitions=256,  # IVF
                    num_sub_vectors=16)  # PQ

Search the dataset

# Get top 10 similar vectors
import duckdb

dataset = lance.dataset(uri)

# Sample 100 query vectors. If this segfaults, make sure you have duckdb v0.7+ installed
sample = duckdb.query("SELECT vector FROM dataset USING SAMPLE 100").to_df()
query_vectors = np.array([np.array(x) for x in sample.vector])

# Get nearest neighbors for all of them
rs = [dataset.to_table(nearest={"column": "vector", "k": 10, "q": q})      
      for q in query_vectors]

*More distance metrics, HNSW, and distributed support is on the roadmap

Python package details

Install from PyPI: pip install pylance # >=0.3.0 is the new rust-based implementation Install from source: maturin develop (under the /python directory) Run unit tests: make test Run integration tests: make integtest

Import via: import lance

The python integration is done via pyo3 + custom python code:

  1. We make wrapper classes in Rust for Dataset/Scanner/RecordBatchReader that's exposed to python.
  2. These are then used by LanceDataset / LanceScanner implementations that extend pyarrow Dataset/Scanner for duckdb compat.
  3. Data is delivered via the Arrow C Data Interface

Motivation

Why do we need a new format for data science and machine learning?

1. Reproducibility is a must-have

Versioning and experimentation support should be built into the dataset instead of requiring multiple tools.
It should also be efficient and not require expensive copying everytime you want to create a new version.
We call this "Zero copy versioning" in Lance. It makes versioning data easy without increasing storage costs.

2. Cloud storage is now the default

Remote object storage is the default now for data science and machine learning and the performance characteristics of cloud are fundamentally different.
Lance format is optimized to be cloud native. Common operations like filter-then-take can be order of magnitude faster using Lance than Parquet, especially for ML data.

3. Vectors must be a first class citizen, not a separate thing

The majority of reasonable scale workflows should not require the added complexity and cost of a specialized database just to compute vector similarity. Lance integrates optimized vector indices into a columnar format so no additional infrastructure is required to get low latency top-K similarity search.

4. Open standards is a requirement

The DS/ML ecosystem is incredibly rich and data must be easily accessible across different languages, tools, and environments. Lance makes Apache Arrow integration its primary interface, which means conversions to/from is 2 lines of code, your code does not need to change after conversion, and nothing is locked-up to force you to pay for vendor compute. We need open-source not fauxpen-source.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pylance-0.8.16-cp38-abi3-win_amd64.whl (19.9 MB view details)

Uploaded CPython 3.8+ Windows x86-64

pylance-0.8.16-cp38-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (19.1 MB view details)

Uploaded CPython 3.8+ manylinux: glibc 2.17+ x86-64

pylance-0.8.16-cp38-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (17.5 MB view details)

Uploaded CPython 3.8+ manylinux: glibc 2.17+ ARM64

pylance-0.8.16-cp38-abi3-macosx_11_0_arm64.whl (16.7 MB view details)

Uploaded CPython 3.8+ macOS 11.0+ ARM64

pylance-0.8.16-cp38-abi3-macosx_10_15_x86_64.whl (18.2 MB view details)

Uploaded CPython 3.8+ macOS 10.15+ x86-64

pylance-0.8.16-1-cp38-abi3-macosx_11_0_arm64.whl (18.1 MB view details)

Uploaded CPython 3.8+ macOS 11.0+ ARM64

File details

Details for the file pylance-0.8.16-cp38-abi3-win_amd64.whl.

File metadata

  • Download URL: pylance-0.8.16-cp38-abi3-win_amd64.whl
  • Upload date:
  • Size: 19.9 MB
  • Tags: CPython 3.8+, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.10

File hashes

Hashes for pylance-0.8.16-cp38-abi3-win_amd64.whl
Algorithm Hash digest
SHA256 a97ed8aef259ec801d6b704852a9b1eb14ed871a6931540ce22d47db9756e9df
MD5 bc33c6f8dbbe62ef87d838338e4ec154
BLAKE2b-256 2b46aaba32d0200c305470a237c5211d1e8da115cec01c10689ed2b2cdcda5e3

See more details on using hashes here.

Provenance

File details

Details for the file pylance-0.8.16-cp38-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pylance-0.8.16-cp38-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9411872508d55a00b55b1640d73ad0fa6eb8bdeba74bb544eff00077e4c6b954
MD5 8a1aa35a3903615760e9824003bce2e1
BLAKE2b-256 51ad2ecd566d5198bf69f17e7e56ae58bfb5056b71a197d8948e0a4865f6a099

See more details on using hashes here.

Provenance

File details

Details for the file pylance-0.8.16-cp38-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pylance-0.8.16-cp38-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 136cf63515e391995150682da5f5ccf8592f5fd6e72bbb25a9c2cdb233382d94
MD5 6dcd549e74d2e7d9b78127e405d1cf69
BLAKE2b-256 2237c04afab7d74a4f3df3282621a03e30d0b69987fe93647fa92818296d00ec

See more details on using hashes here.

Provenance

File details

Details for the file pylance-0.8.16-cp38-abi3-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pylance-0.8.16-cp38-abi3-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 954fbb1f96622c2f85eef6248cb6b34c8d3a90eb8e4fa8dd0ead926f3226402f
MD5 8a7cc47b75cba7609a9fb9a8b185781e
BLAKE2b-256 ae3983468139d2014f9e51a18ff72fad58afc0e71310ea4ef1cd8b62f1c9ccb2

See more details on using hashes here.

Provenance

File details

Details for the file pylance-0.8.16-cp38-abi3-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for pylance-0.8.16-cp38-abi3-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 8bb4c9f39321dfc09b8d13efb91e9245ee1dfb7445cc071b3675c413d5005a88
MD5 cc3d43eeef0da428f7d8c0ab2bec10f9
BLAKE2b-256 68e83eaaf8858de54c4d9dcd383995a4a00890bec1cf02de6784100030243414

See more details on using hashes here.

Provenance

File details

Details for the file pylance-0.8.16-1-cp38-abi3-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pylance-0.8.16-1-cp38-abi3-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 24e3f61f33ec448687225d87c9353c993ca633528c221d6a9e62208d428ed384
MD5 6e35d7b3ebe950ef024161bdf7c04c89
BLAKE2b-256 d5e87fd13ed0ac749a715e9d1a24973a4f6920246ad7b3b905ca09f818112fb8

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page