Skip to main content

python wrapper for Lance columnar format

Project description

Python bindings for Lance Data Format

:warning: Under heavy development

Lance Logo

Lance is a new columnar data format for data science and machine learning

Why you should use Lance

  1. Is order of magnitude faster than parquet for point queries and nested data structures common to DS/ML
  2. Comes with a fast vector index that delivers sub-millisecond nearest neighbors search performance
  3. Is automatically versioned and supports lineage and time-travel for full reproducibility
  4. Integrated with duckdb/pandas/polars already. Easily convert from/to parquet in 2 lines of code

Quick start

Installation

pip install pylance

Make sure you have a recent version of pandas (1.5+), pyarrow (10.0+), and DuckDB (0.7.0+)

Converting to Lance

import lance

import pandas as pd
import pyarrow as pa
import pyarrow.dataset

df = pd.DataFrame({"a": [5], "b": [10]})
uri = "/tmp/test.parquet"
tbl = pa.Table.from_pandas(df)
pa.dataset.write_dataset(tbl, uri, format='parquet')

parquet = pa.dataset.dataset(uri, format='parquet')
lance.write_dataset(parquet, "/tmp/test.lance")

Reading Lance data

dataset = lance.dataset("/tmp/test.lance")
assert isinstance(dataset, pa.dataset.Dataset)

Pandas

df = dataset.to_table().to_pandas()

DuckDB

import duckdb

# If this segfaults, make sure you have duckdb v0.7+ installed
duckdb.query("SELECT * FROM dataset LIMIT 10").to_df()

Vector search

Download the sift1m subset

wget ftp://ftp.irisa.fr/local/texmex/corpus/sift.tar.gz
tar -xzf sift.tar.gz

Convert it to Lance

import lance
from lance.vector import vec_to_table
import numpy as np
import struct

nvecs = 1000000
ndims = 128
with open("sift/sift_base.fvecs", mode="rb") as fobj:
    buf = fobj.read()
    data = np.array(struct.unpack("<128000000f", buf[4 : 4 + 4 * nvecs * ndims])).reshape((nvecs, ndims))
    dd = dict(zip(range(nvecs), data))

table = vec_to_table(dd)
uri = "vec_data.lance"
sift1m = lance.write_dataset(table, uri, max_rows_per_group=8192, max_rows_per_file=1024*1024)

Build the index

sift1m.create_index("vector",
                    index_type="IVF_PQ", 
                    num_partitions=256,  # IVF
                    num_sub_vectors=16)  # PQ

Search the dataset

# Get top 10 similar vectors
import duckdb

dataset = lance.dataset(uri)

# Sample 100 query vectors. If this segfaults, make sure you have duckdb v0.7+ installed
sample = duckdb.query("SELECT vector FROM dataset USING SAMPLE 100").to_df()
query_vectors = np.array([np.array(x) for x in sample.vector])

# Get nearest neighbors for all of them
rs = [dataset.to_table(nearest={"column": "vector", "k": 10, "q": q})      
      for q in query_vectors]

*More distance metrics, HNSW, and distributed support is on the roadmap

Python package details

Install from PyPI: pip install pylance # >=0.3.0 is the new rust-based implementation Install from source: maturin develop (under the /python directory) Run unit tests: make test Run integration tests: make integtest

Import via: import lance

The python integration is done via pyo3 + custom python code:

  1. We make wrapper classes in Rust for Dataset/Scanner/RecordBatchReader that's exposed to python.
  2. These are then used by LanceDataset / LanceScanner implementations that extend pyarrow Dataset/Scanner for duckdb compat.
  3. Data is delivered via the Arrow C Data Interface

Motivation

Why do we need a new format for data science and machine learning?

1. Reproducibility is a must-have

Versioning and experimentation support should be built into the dataset instead of requiring multiple tools.
It should also be efficient and not require expensive copying everytime you want to create a new version.
We call this "Zero copy versioning" in Lance. It makes versioning data easy without increasing storage costs.

2. Cloud storage is now the default

Remote object storage is the default now for data science and machine learning and the performance characteristics of cloud are fundamentally different.
Lance format is optimized to be cloud native. Common operations like filter-then-take can be order of magnitude faster using Lance than Parquet, especially for ML data.

3. Vectors must be a first class citizen, not a separate thing

The majority of reasonable scale workflows should not require the added complexity and cost of a specialized database just to compute vector similarity. Lance integrates optimized vector indices into a columnar format so no additional infrastructure is required to get low latency top-K similarity search.

4. Open standards is a requirement

The DS/ML ecosystem is incredibly rich and data must be easily accessible across different languages, tools, and environments. Lance makes Apache Arrow integration its primary interface, which means conversions to/from is 2 lines of code, your code does not need to change after conversion, and nothing is locked-up to force you to pay for vendor compute. We need open-source not fauxpen-source.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pylance-0.8.19-cp38-abi3-win_amd64.whl (20.1 MB view details)

Uploaded CPython 3.8+ Windows x86-64

pylance-0.8.19-cp38-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (19.4 MB view details)

Uploaded CPython 3.8+ manylinux: glibc 2.17+ x86-64

pylance-0.8.19-cp38-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (17.8 MB view details)

Uploaded CPython 3.8+ manylinux: glibc 2.17+ ARM64

pylance-0.8.19-cp38-abi3-macosx_11_0_arm64.whl (16.9 MB view details)

Uploaded CPython 3.8+ macOS 11.0+ ARM64

pylance-0.8.19-cp38-abi3-macosx_10_15_x86_64.whl (18.4 MB view details)

Uploaded CPython 3.8+ macOS 10.15+ x86-64

File details

Details for the file pylance-0.8.19-cp38-abi3-win_amd64.whl.

File metadata

  • Download URL: pylance-0.8.19-cp38-abi3-win_amd64.whl
  • Upload date:
  • Size: 20.1 MB
  • Tags: CPython 3.8+, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.10

File hashes

Hashes for pylance-0.8.19-cp38-abi3-win_amd64.whl
Algorithm Hash digest
SHA256 e6c2dc992098568bcfd60a01e47f6a9c56224579259394f87df6fb057f4b81e3
MD5 11e532603c1cfa70ef11d954469fbbc4
BLAKE2b-256 f42af3e778ad835812541a2b4d122b2cf69c6085a65e6ee0253d9f4fb8f9099c

See more details on using hashes here.

Provenance

File details

Details for the file pylance-0.8.19-cp38-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pylance-0.8.19-cp38-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ee2206474ee219a04c41136836fc42f05c85bc1ada72364e5b2347b3096591d8
MD5 5f2eabd372a3a406f3fec691ead9d6ae
BLAKE2b-256 ebff891296c49067687f9dc05483c1891e85af7b7cc97a7092dabfa066d17a63

See more details on using hashes here.

Provenance

File details

Details for the file pylance-0.8.19-cp38-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pylance-0.8.19-cp38-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 1bed654453791a0b24e67af0532a632ca9a9681fa2196f9e9c7913161992d565
MD5 1a2c49394f189dd081afd599bfd629b1
BLAKE2b-256 37ae2c71b7afc4e9083ec955db087364f546ae1bf2a5b4273bcfda803f2857a9

See more details on using hashes here.

Provenance

File details

Details for the file pylance-0.8.19-cp38-abi3-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pylance-0.8.19-cp38-abi3-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 f010f74eec92f5f0bc9886010859eaa909121af6f65985267737a5a05d2b7aed
MD5 483dd3a417251d18dba6819346ef5906
BLAKE2b-256 e7377a7ba494f0e60317fec889bdcddf224f35e795fec459ef1bbd3125d0d0d5

See more details on using hashes here.

Provenance

File details

Details for the file pylance-0.8.19-cp38-abi3-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for pylance-0.8.19-cp38-abi3-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 a8a2e0d5895a7d0ac98afa0c2389ec4830b97d04d16399114897e63d8384e1ed
MD5 842453c91c3d8580039284e4ea92de36
BLAKE2b-256 e82855084388aaabcd5e943ae96371ed55b8706a7f4e33c8f89429de3a2c3d3d

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page