Skip to main content

python wrapper for Lance columnar format

Project description

Python bindings for Lance Data Format

:warning: Under heavy development

Lance Logo

Lance is a new columnar data format for data science and machine learning

Why you should use Lance

  1. Is order of magnitude faster than parquet for point queries and nested data structures common to DS/ML
  2. Comes with a fast vector index that delivers sub-millisecond nearest neighbors search performance
  3. Is automatically versioned and supports lineage and time-travel for full reproducibility
  4. Integrated with duckdb/pandas/polars already. Easily convert from/to parquet in 2 lines of code

Quick start

Installation

pip install pylance

Make sure you have a recent version of pandas (1.5+), pyarrow (10.0+), and DuckDB (0.7.0+)

Converting to Lance

import lance

import pandas as pd
import pyarrow as pa
import pyarrow.dataset

df = pd.DataFrame({"a": [5], "b": [10]})
uri = "/tmp/test.parquet"
tbl = pa.Table.from_pandas(df)
pa.dataset.write_dataset(tbl, uri, format='parquet')

parquet = pa.dataset.dataset(uri, format='parquet')
lance.write_dataset(parquet, "/tmp/test.lance")

Reading Lance data

dataset = lance.dataset("/tmp/test.lance")
assert isinstance(dataset, pa.dataset.Dataset)

Pandas

df = dataset.to_table().to_pandas()

DuckDB

import duckdb

# If this segfaults, make sure you have duckdb v0.7+ installed
duckdb.query("SELECT * FROM dataset LIMIT 10").to_df()

Vector search

Download the sift1m subset

wget ftp://ftp.irisa.fr/local/texmex/corpus/sift.tar.gz
tar -xzf sift.tar.gz

Convert it to Lance

import lance
from lance.vector import vec_to_table
import numpy as np
import struct

nvecs = 1000000
ndims = 128
with open("sift/sift_base.fvecs", mode="rb") as fobj:
    buf = fobj.read()
    data = np.array(struct.unpack("<128000000f", buf[4 : 4 + 4 * nvecs * ndims])).reshape((nvecs, ndims))
    dd = dict(zip(range(nvecs), data))

table = vec_to_table(dd)
uri = "vec_data.lance"
sift1m = lance.write_dataset(table, uri, max_rows_per_group=8192, max_rows_per_file=1024*1024)

Build the index

sift1m.create_index("vector",
                    index_type="IVF_PQ", 
                    num_partitions=256,  # IVF
                    num_sub_vectors=16)  # PQ

Search the dataset

# Get top 10 similar vectors
import duckdb

dataset = lance.dataset(uri)

# Sample 100 query vectors. If this segfaults, make sure you have duckdb v0.7+ installed
sample = duckdb.query("SELECT vector FROM dataset USING SAMPLE 100").to_df()
query_vectors = np.array([np.array(x) for x in sample.vector])

# Get nearest neighbors for all of them
rs = [dataset.to_table(nearest={"column": "vector", "k": 10, "q": q})      
      for q in query_vectors]

*More distance metrics, HNSW, and distributed support is on the roadmap

Python package details

Install from PyPI: pip install pylance # >=0.3.0 is the new rust-based implementation Install from source: maturin develop (under the /python directory) Run unit tests: make test Run integration tests: make integtest

Import via: import lance

The python integration is done via pyo3 + custom python code:

  1. We make wrapper classes in Rust for Dataset/Scanner/RecordBatchReader that's exposed to python.
  2. These are then used by LanceDataset / LanceScanner implementations that extend pyarrow Dataset/Scanner for duckdb compat.
  3. Data is delivered via the Arrow C Data Interface

Motivation

Why do we need a new format for data science and machine learning?

1. Reproducibility is a must-have

Versioning and experimentation support should be built into the dataset instead of requiring multiple tools.
It should also be efficient and not require expensive copying everytime you want to create a new version.
We call this "Zero copy versioning" in Lance. It makes versioning data easy without increasing storage costs.

2. Cloud storage is now the default

Remote object storage is the default now for data science and machine learning and the performance characteristics of cloud are fundamentally different.
Lance format is optimized to be cloud native. Common operations like filter-then-take can be order of magnitude faster using Lance than Parquet, especially for ML data.

3. Vectors must be a first class citizen, not a separate thing

The majority of reasonable scale workflows should not require the added complexity and cost of a specialized database just to compute vector similarity. Lance integrates optimized vector indices into a columnar format so no additional infrastructure is required to get low latency top-K similarity search.

4. Open standards is a requirement

The DS/ML ecosystem is incredibly rich and data must be easily accessible across different languages, tools, and environments. Lance makes Apache Arrow integration its primary interface, which means conversions to/from is 2 lines of code, your code does not need to change after conversion, and nothing is locked-up to force you to pay for vendor compute. We need open-source not fauxpen-source.

Project details


Release history Release notifications | RSS feed

This version

0.8.3

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pylance-0.8.3-cp38-abi3-win_amd64.whl (19.0 MB view details)

Uploaded CPython 3.8+ Windows x86-64

pylance-0.8.3-cp38-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (21.3 MB view details)

Uploaded CPython 3.8+ manylinux: glibc 2.17+ x86-64

pylance-0.8.3-cp38-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (19.8 MB view details)

Uploaded CPython 3.8+ manylinux: glibc 2.17+ ARM64

pylance-0.8.3-cp38-abi3-macosx_11_0_arm64.whl (15.9 MB view details)

Uploaded CPython 3.8+ macOS 11.0+ ARM64

pylance-0.8.3-cp38-abi3-macosx_10_15_x86_64.whl (17.3 MB view details)

Uploaded CPython 3.8+ macOS 10.15+ x86-64

File details

Details for the file pylance-0.8.3-cp38-abi3-win_amd64.whl.

File metadata

  • Download URL: pylance-0.8.3-cp38-abi3-win_amd64.whl
  • Upload date:
  • Size: 19.0 MB
  • Tags: CPython 3.8+, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.10

File hashes

Hashes for pylance-0.8.3-cp38-abi3-win_amd64.whl
Algorithm Hash digest
SHA256 71de4fefc17793888ea7d16ef4f4d08958c937f328cf3e04b5a44b01ef05743e
MD5 db02e4884b1331e984b22d37182dfa4a
BLAKE2b-256 026ff1943e06dd6fb0c7d9ea78fedcf85886616eac1c1ea7ff11f0ec95e9fd2a

See more details on using hashes here.

Provenance

File details

Details for the file pylance-0.8.3-cp38-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pylance-0.8.3-cp38-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 dbe3d82d5bb0f47cf8f75d3a7615f847a4b07f674296383f8d94cdfa639fe87f
MD5 fca1f5c22ca5bd9a21733481e7e18c79
BLAKE2b-256 0684b4f445f2229b133129588473a9009f478e571d717b39c7c01407bc021c16

See more details on using hashes here.

Provenance

File details

Details for the file pylance-0.8.3-cp38-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pylance-0.8.3-cp38-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 65ef6cfe7b803795580e7848ef3879b63a14515fd98de1888b2cb5ce319e2813
MD5 e7a617109f01eb5c2dadde4b1edd6907
BLAKE2b-256 8378197021bd3051c1f53f0f1a5dca45b2ae9379d28ef329faca8480b255bff2

See more details on using hashes here.

Provenance

File details

Details for the file pylance-0.8.3-cp38-abi3-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pylance-0.8.3-cp38-abi3-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 202d68e29fa7da0859ba6caf34b7db2281dd3e994c13e89845cad384e3b3d22b
MD5 56b32ce28a3d57ddeb0038cf224e2520
BLAKE2b-256 684437eacb4128c6c9e44ade16a32e1321c2a8dcb1144eb3d78c6bbf8c725041

See more details on using hashes here.

Provenance

File details

Details for the file pylance-0.8.3-cp38-abi3-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for pylance-0.8.3-cp38-abi3-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 b34f5303481a6789f49092e3c8ea9b837f3b7a63e22f32009243c298de7fec77
MD5 1d82a1b9dd38215e9dfa603074cec02c
BLAKE2b-256 9eba1866c76275dfefe6980fc01ddcfa056e9bd87d42c335230c94410187c0bd

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page