Skip to main content

Add-on to pymatgen for diffusion analysis.

Project description

CI Status https://coveralls.io/repos/github/materialsvirtuallab/pymatgen-diffusion/badge.svg?branch=master

Pymatgen-diffusion

This is an add-on to pymatgen for diffusion analysis that is developed by the Materials Virtual Lab. Note that it relies on pymatgen for structural manipulations, file io, and preliminary analyses. In particular, pymatgen’s DiffusionAnalyzer is used heavily.

This is, and will always be, a scientific work in progress. Pls check back for more details.

Major Update (v2021.3.5)

pymatgen-diffusion is now released as a namespace package pymatgen-analysis-diffusion on PyPI. It should be imported via pymatgen.analysis.diffusion instead pymatgen_diffusion.

Features (non-exhaustive!)

  1. Van-Hove analysis

  2. Probability density

  3. Clustering (e.g., k-means with periodic boundary conditions).

  4. Migration path finding and IDPP.

Citing

If you use pymatgen-diffusion in your research, please cite the following work:

Deng, Z.; Zhu, Z.; Chu, I.-H.; Ong, S. P. Data-Driven First-Principles
Methods for the Study and Design of Alkali Superionic Conductors,
Chem. Mater., 2016, acs.chemmater.6b02648, doi:10.1021/acs.chemmater.6b02648.

You should also include the following citation for the pymatgen core package given that it forms the basis for most of the analyses:

Shyue Ping Ong, William Davidson Richards, Anubhav Jain, Geoffroy Hautier,
Michael Kocher, Shreyas Cholia, Dan Gunter, Vincent Chevrier, Kristin A.
Persson, Gerbrand Ceder. *Python Materials Genomics (pymatgen) : A Robust,
Open-Source Python Library for Materials Analysis.* Computational
Materials Science, 2013, 68, 314-319. doi:10.1016/j.commatsci.2012.10.028.

In addtion, some of the analyses may also have relevant publications that you should cite. Please consult the documentation of each module.

Contributing

We welcome contributions in all forms. If you’d like to contribute, please fork this repository, make changes and send us a pull request!

Acknowledgements

We gratefully acknowledge funding from the following agencies for the development of this code:

  1. US National Science Foundation’s Designing Materials to Revolutionize and Engineer our Future (DMREF) program under Grant No. 1436976 for the AIMD analysis package.

  2. US Department of Energy, Office of Science, Basic Energy Sciences under Award No. DE-SC0012118 for the NEB analysis package.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pymatgen-analysis-diffusion-2021.3.6.tar.gz (66.9 kB view details)

Uploaded Source

Built Distribution

File details

Details for the file pymatgen-analysis-diffusion-2021.3.6.tar.gz.

File metadata

  • Download URL: pymatgen-analysis-diffusion-2021.3.6.tar.gz
  • Upload date:
  • Size: 66.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/52.0.0.post20210125 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.8

File hashes

Hashes for pymatgen-analysis-diffusion-2021.3.6.tar.gz
Algorithm Hash digest
SHA256 a8bb9801a13e4e79aaa2081f0a22d3f8ac6079984c11ed686178da98b3c00f00
MD5 8de8b5e81c8af96ea877273226915b70
BLAKE2b-256 b92c371f4a7e42f19178ca137b4004de07e8de4d67bff0be71d2c14f5347c124

See more details on using hashes here.

File details

Details for the file pymatgen_analysis_diffusion-2021.3.6-py3-none-any.whl.

File metadata

  • Download URL: pymatgen_analysis_diffusion-2021.3.6-py3-none-any.whl
  • Upload date:
  • Size: 79.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/52.0.0.post20210125 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.8

File hashes

Hashes for pymatgen_analysis_diffusion-2021.3.6-py3-none-any.whl
Algorithm Hash digest
SHA256 768a24bf7d1ab09b24ec820c9ef37e0a6a90c0cecb5e5ab69fa9e8b7e2a6af6a
MD5 42a348fae9574197eea5346e103c982b
BLAKE2b-256 5c04a19d3bbc2ce0ffc700e14c331da3b99aa3dd250ad2fe270fd66e229b7178

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page