Skip to main content

Add-on to pymatgen for diffusion analysis.

Project description

CI Status https://coveralls.io/repos/github/materialsvirtuallab/pymatgen-diffusion/badge.svg?branch=master

Pymatgen-diffusion

This is an add-on to pymatgen for diffusion analysis that is developed by the Materials Virtual Lab. Note that it relies on pymatgen for structural manipulations, file io, and preliminary analyses. In particular, pymatgen’s DiffusionAnalyzer is used heavily.

This is, and will always be, a scientific work in progress. Pls check back for more details.

Major Update (v2021.3.5)

pymatgen-diffusion is now released as a namespace package pymatgen-analysis-diffusion on PyPI. It should be imported via pymatgen.analysis.diffusion instead pymatgen_diffusion.

Features (non-exhaustive!)

  1. Van-Hove analysis

  2. Probability density

  3. Clustering (e.g., k-means with periodic boundary conditions).

  4. Migration path finding and IDPP.

Citing

If you use pymatgen-diffusion in your research, please cite the following work:

Deng, Z.; Zhu, Z.; Chu, I.-H.; Ong, S. P. Data-Driven First-Principles
Methods for the Study and Design of Alkali Superionic Conductors,
Chem. Mater., 2016, acs.chemmater.6b02648, doi:10.1021/acs.chemmater.6b02648.

You should also include the following citation for the pymatgen core package given that it forms the basis for most of the analyses:

Shyue Ping Ong, William Davidson Richards, Anubhav Jain, Geoffroy Hautier,
Michael Kocher, Shreyas Cholia, Dan Gunter, Vincent Chevrier, Kristin A.
Persson, Gerbrand Ceder. *Python Materials Genomics (pymatgen) : A Robust,
Open-Source Python Library for Materials Analysis.* Computational
Materials Science, 2013, 68, 314-319. doi:10.1016/j.commatsci.2012.10.028.

In addtion, some of the analyses may also have relevant publications that you should cite. Please consult the documentation of each module.

Contributing

We welcome contributions in all forms. If you’d like to contribute, please fork this repository, make changes and send us a pull request!

Acknowledgements

We gratefully acknowledge funding from the following agencies for the development of this code:

  1. US National Science Foundation’s Designing Materials to Revolutionize and Engineer our Future (DMREF) program under Grant No. 1436976 for the AIMD analysis package.

  2. US Department of Energy, Office of Science, Basic Energy Sciences under Award No. DE-SC0012118 for the NEB analysis package.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pymatgen-analysis-diffusion-2021.4.29.tar.gz (68.4 kB view details)

Uploaded Source

Built Distribution

File details

Details for the file pymatgen-analysis-diffusion-2021.4.29.tar.gz.

File metadata

  • Download URL: pymatgen-analysis-diffusion-2021.4.29.tar.gz
  • Upload date:
  • Size: 68.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.10.0 pkginfo/1.6.1 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.4

File hashes

Hashes for pymatgen-analysis-diffusion-2021.4.29.tar.gz
Algorithm Hash digest
SHA256 f8c67f7a1615039236ee0b2d31fe08227d327dfbbdbebac43846aa0200b87091
MD5 9dbe4b600ba36927fe4557667061b59f
BLAKE2b-256 e74adcfc10b6313ec66d5834cb75e90d6ef7edaa20afd3224ff0acbde221368d

See more details on using hashes here.

File details

Details for the file pymatgen_analysis_diffusion-2021.4.29-py3-none-any.whl.

File metadata

  • Download URL: pymatgen_analysis_diffusion-2021.4.29-py3-none-any.whl
  • Upload date:
  • Size: 83.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.10.0 pkginfo/1.6.1 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.4

File hashes

Hashes for pymatgen_analysis_diffusion-2021.4.29-py3-none-any.whl
Algorithm Hash digest
SHA256 bcc5f23baa4ebc75c2055952ee05e13e39455c277036706abf0ae9b267fbc800
MD5 e894d36d1994e295f92082d6cefb47cb
BLAKE2b-256 cdbcaebcd88c4ea75a59c86a5595ba2e1f8cdecd755b664dfee97d320cefa0de

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page