Skip to main content

Add-on to pymatgen for diffusion analysis.

Project description

CI Status https://coveralls.io/repos/github/materialsvirtuallab/pymatgen-diffusion/badge.svg?branch=master

pymatgen-analysis-diffusion

Formerly pymatgen-diffusion, this is an add-on to pymatgen for diffusion analysis that is developed by the Materials Virtual Lab. Note that it relies on pymatgen for structural manipulations, file io, and preliminary analyses. This is and will always be, a scientific work in progress. Pls check back regularly for more details.

Major Update (v2021.3.5)

pymatgen-analysis-diffusion is now released as a namespace package pymatgen-analysis-diffusion on PyPI. It should be imported via pymatgen.analysis.diffusion instead pymatgen_diffusion. To install this package via pip:

pip install pymatgen-analysis-diffusion

Features (non-exhaustive!)

  1. Van-Hove analysis

  2. Probability density

  3. Clustering (e.g., k-means with periodic boundary conditions).

  4. Migration path finding and IDPP.

Citing

If you use pymatgen-diffusion in your research, please cite the following work:

Deng, Z.; Zhu, Z.; Chu, I.H.; Ong, S. P. Data-Driven First-Principles
Methods for the Study and Design of Alkali Superionic Conductors,
Chem. Mater., 2016, acs.chemmater.6b02648, doi:10.1021/acs.chemmater.6b02648.

You should also include the following citation for the pymatgen core package given that it forms the basis for most of the analyses:

Shyue Ping Ong, William Davidson Richards, Anubhav Jain, Geoffroy Hautier,
Michael Kocher, Shreyas Cholia, Dan Gunter, Vincent Chevrier, Kristin A.
Persson, Gerbrand Ceder. *Python Materials Genomics (pymatgen) : A Robust,
Open-Source Python Library for Materials Analysis.* Computational
Materials Science, 2013, 68, 314-319. doi:10.1016/j.commatsci.2012.10.028.

In addtion, some of the analyses may also have relevant publications that you should cite. Please consult the documentation of each module.

Contributing

We welcome contributions in all forms. If you’d like to contribute, please fork this repository, make changes and send us a pull request!

Acknowledgements

We gratefully acknowledge funding from the following agencies for the development of this code:

  1. US National Science Foundation’s Designing Materials to Revolutionize and Engineer our Future (DMREF) program under Grant No. 1436976 for the AIMD analysis package.

  2. US Department of Energy, Office of Science, Basic Energy Sciences under Award No. DE-SC0012118 for the NEB analysis package.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pymatgen-analysis-diffusion-2022.1.15.tar.gz (69.7 kB view details)

Uploaded Source

Built Distribution

File details

Details for the file pymatgen-analysis-diffusion-2022.1.15.tar.gz.

File metadata

  • Download URL: pymatgen-analysis-diffusion-2022.1.15.tar.gz
  • Upload date:
  • Size: 69.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.9.0 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for pymatgen-analysis-diffusion-2022.1.15.tar.gz
Algorithm Hash digest
SHA256 062fa20d415f10f5b29cf3bd966f2c3174f7a0e37d72fcfd652b0414be0a2009
MD5 0b2e56396eb9830da797b9f5efa65c2e
BLAKE2b-256 af4c4dcd6cbf59a73a8d626173ec9840cefad9b418b1db02a6705c2e5748a138

See more details on using hashes here.

File details

Details for the file pymatgen_analysis_diffusion-2022.1.15-py3-none-any.whl.

File metadata

  • Download URL: pymatgen_analysis_diffusion-2022.1.15-py3-none-any.whl
  • Upload date:
  • Size: 84.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.9.0 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for pymatgen_analysis_diffusion-2022.1.15-py3-none-any.whl
Algorithm Hash digest
SHA256 8430f32fa58fb177c0d0abbf655363c62773c3083b1e5b5663b3cc4d5c975663
MD5 1c5a72f35396f88bd7fd6e8fec662478
BLAKE2b-256 da8d312cba6dc89f1def83b5ca76cef7daf042a02a743f191f21c4d19a5198ff

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page